R/generics.R
, R/preprocessing.R
RunTFIDF.Rd
Run term frequency inverse document frequency (TF-IDF) normalization on a matrix.
RunTFIDF(object, ...)
# S3 method for default
RunTFIDF(
object,
assay = NULL,
method = 1,
scale.factor = 10000,
idf = NULL,
verbose = TRUE,
...
)
# S3 method for Assay
RunTFIDF(
object,
assay = NULL,
method = 1,
scale.factor = 10000,
idf = NULL,
verbose = TRUE,
...
)
# S3 method for Seurat
RunTFIDF(
object,
assay = NULL,
method = 1,
scale.factor = 10000,
idf = NULL,
verbose = TRUE,
...
)
A Seurat object
Arguments passed to other methods
Name of assay to use
Which TF-IDF implementation to use. Choice of:
1: The TF-IDF implementation used by Stuart & Butler et al. 2019 (doi:10.1101/460147 ). This computes \(\log(TF \times IDF)\).
2: The TF-IDF implementation used by Cusanovich & Hill et al. 2018 (doi:10.1016/j.cell.2018.06.052 ). This computes \(TF \times (\log(IDF))\).
3: The log-TF method used by Andrew Hill. This computes \(\log(TF) \times \log(IDF)\).
4: The 10x Genomics method (no TF normalization). This computes \(IDF\).
Which scale factor to use. Default is 10000.
A precomputed IDF vector to use. If NULL, compute based on the input data matrix.
Print progress
Returns a Seurat
object
Four different TF-IDF methods are implemented. We recommend using method 1 (the default).
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
RunTFIDF(object = mat)
#> Performing TF-IDF normalization
#> 5 x 5 sparse Matrix of class "dgCMatrix"
#>
#> [1,] 8.699681 7.419181 . 8.112028 .
#> [2,] . . . 9.315791 8.335112
#> [3,] . 8.335112 8.740497 . .
#> [4,] 7.824446 7.642204 7.354682 . 8.452868
#> [5,] . 8.335112 8.740497 . .
RunTFIDF(atac_small[['peaks']])
#> Performing TF-IDF normalization
#> ChromatinAssay data with 323 features for 100 cells
#> Variable features: 323
#> Genome: hg19
#> Annotation present: TRUE
#> Motifs present: TRUE
#> Fragment files: 0
RunTFIDF(object = atac_small)
#> Performing TF-IDF normalization
#> An object of class Seurat
#> 1323 features across 100 samples within 3 assays
#> Active assay: peaks (323 features, 323 variable features)
#> 2 other assays present: bins, RNA
#> 2 dimensional reductions calculated: lsi, umap