R/generics.R
, R/preprocessing.R
RunTFIDF.Rd
Run term frequency inverse document frequency (TF-IDF) normalization
RunTFIDF(object, ...) # S3 method for default RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, verbose = TRUE, ... ) # S3 method for Assay RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, verbose = TRUE, ... ) # S3 method for Seurat RunTFIDF( object, assay = NULL, method = 1, scale.factor = 10000, verbose = TRUE, ... )
object | A Seurat object |
---|---|
... | Arguments passed to other methods |
assay | Name of assay to use |
method | Which TF-IDF implementation to use. Choice of:
|
scale.factor | Which scale factor to use. Default is 10000. |
verbose | Print progress |
Returns a Seurat
object
#>#> 5 x 5 sparse Matrix of class "dgCMatrix" #> #> [1,] 8.335112 8.586373 . . . #> [2,] . 7.082948 . 8.335112 7.929766 #> [3,] 8.112028 7.265130 7.824446 . 7.706713 #> [4,] . 7.775676 . . 8.217359 #> [5,] 7.524481 6.677903 8.335112 7.929766 7.119286RunTFIDF(atac_small[['peaks']])#>#> Assay data with 100 features for 100 cells #> Top 10 variable features: #> chr1:1549446-1552535, chr1:1051006-1053102, chr1:1240091-1245762, #> chr1:1333514-1336003, chr1:1309645-1311492, chr1:928630-937949, #> chr1:1166366-1168282, chr1:1446312-1448163, chr1:1562519-1567986, #> chr1:1259506-1261414RunTFIDF(object = atac_small)#>#> An object of class Seurat #> 300 features across 100 samples within 3 assays #> Active assay: peaks (100 features, 90 variable features) #> 2 other assays present: bins, RNA #> 2 dimensional reductions calculated: lsi, umap