Set counts >1 to 1 in a count matrix
BinarizeCounts(object, ...) # S3 method for default BinarizeCounts(object, assay = NULL, verbose = TRUE, ...) # S3 method for Assay BinarizeCounts(object, assay = NULL, verbose = TRUE, ...) # S3 method for Seurat BinarizeCounts(object, assay = NULL, verbose = TRUE, ...)
object | A Seurat object |
---|---|
... | Arguments passed to other methods |
assay | Name of assay to use. Can be a list of assays, and binarization will be applied to each. |
verbose | Display messages |
Returns a Seurat
object
#> [,1] [,2] [,3] [,4] [,5] #> [1,] 0 1 1 1 1 #> [2,] 1 1 0 1 1 #> [3,] 1 1 0 0 1 #> [4,] 1 1 0 1 1 #> [5,] 0 1 1 1 0BinarizeCounts(atac_small[['peaks']])#> Assay data with 100 features for 100 cells #> Top 10 variable features: #> chr1:1549446-1552535, chr1:1051006-1053102, chr1:1240091-1245762, #> chr1:1333514-1336003, chr1:1309645-1311492, chr1:928630-937949, #> chr1:1166366-1168282, chr1:1446312-1448163, chr1:1562519-1567986, #> chr1:1259506-1261414BinarizeCounts(atac_small)#> An object of class Seurat #> 300 features across 100 samples within 3 assays #> Active assay: peaks (100 features, 90 variable features) #> 2 other assays present: bins, RNA #> 2 dimensional reductions calculated: lsi, umap