In this tutorial, we demonstrate how to call peaks on a single-cell ATAC-seq dataset using MACS2.

To use the peak calling functionality in Signac you will first need to install MACS2. This can be done using pip or conda, or by building the package from source.

In this demonstration we use scATAC-seq data for human PBMCs. See our vignette for the code used to generate this object, and links to the raw data. First, load the required packages and the pre-computed Seurat object:

library(Signac)
library(Seurat)

pbmc <- readRDS("pbmc.rds")
DimPlot(pbmc)

Peak calling can be performed using the CallPeaks() function, and can either be done separately for different groups of cells, or performed using data from all the cells. To call peaks on each annotated cell type, we can use the group.by argument:

peaks <- CallPeaks(
  object = pbmc,
  group.by = "predicted.id"
)

The results are returned as a GRanges object, with an additional metadata column listing the cell types that each peak was identified in:

seqnames start end width strand peak_called_in
chr1 180647 181036 390 * CD4_Memory,NK_dim,CD8_effector
chr1 181268 181557 290 * CD4_Naive,CD4_Memory,CD8_effector
chr1 191245 191931 687 * CD14+_Monocytes
chr1 267860 268092 233 * Double_negative_T_cell,CD14+_Monocytes,CD4_Memory
chr1 271173 271382 210 * CD14+_Monocytes
chr1 280566 280765 200 * CD14+_Monocytes

To quantify counts in each peak, you can use the FeatureMatrix() function.

We can visualize the cell-type-specific MACS2 peak calls alongside the 10x Cellranger peak calls (currently being used in the pbmc object) with the CoveragePlot() function. Here the Cellranger peaks are shown in grey and the MACS2 peaks in red:

CoveragePlot(
  object = pbmc,
  region = "CD8A",
  ranges = peaks,
  ranges.title = "MACS2"
)
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_segment()`).
Session Info
## R version 4.3.1 (2023-06-16)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Sonoma 14.5
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: Asia/Singapore
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] Seurat_5.1.0       SeuratObject_5.0.2 sp_2.1-4           Signac_1.14.0     
## 
## loaded via a namespace (and not attached):
##   [1] RColorBrewer_1.1-3      jsonlite_1.8.8          magrittr_2.0.3         
##   [4] spatstat.utils_3.0-4    farver_2.1.2            rmarkdown_2.28         
##   [7] fs_1.6.4                zlibbioc_1.48.2         ragg_1.3.2             
##  [10] vctrs_0.6.5             ROCR_1.0-11             memoise_2.0.1          
##  [13] spatstat.explore_3.2-7  Rsamtools_2.18.0        RCurl_1.98-1.16        
##  [16] RcppRoll_0.3.1          htmltools_0.5.8.1       sass_0.4.9             
##  [19] sctransform_0.4.1       parallelly_1.38.0       KernSmooth_2.23-24     
##  [22] bslib_0.8.0             htmlwidgets_1.6.4       desc_1.4.3             
##  [25] ica_1.0-3               plyr_1.8.9              plotly_4.10.4          
##  [28] zoo_1.8-12              cachem_1.1.0            igraph_2.0.3           
##  [31] mime_0.12               lifecycle_1.0.4         pkgconfig_2.0.3        
##  [34] Matrix_1.6-5            R6_2.5.1                fastmap_1.2.0          
##  [37] GenomeInfoDbData_1.2.11 fitdistrplus_1.1-11     future_1.34.0          
##  [40] shiny_1.9.1             digest_0.6.37           colorspace_2.1-1       
##  [43] patchwork_1.2.0         S4Vectors_0.40.2        tensor_1.5             
##  [46] RSpectra_0.16-2         irlba_2.3.5.1           textshaping_0.4.0      
##  [49] GenomicRanges_1.54.1    labeling_0.4.3          progressr_0.14.0       
##  [52] fansi_1.0.6             spatstat.sparse_3.0-3   polyclip_1.10-6        
##  [55] abind_1.4-5             httr_1.4.7              compiler_4.3.1         
##  [58] withr_3.0.1             BiocParallel_1.36.0     fastDummies_1.7.3      
##  [61] highr_0.11              MASS_7.3-60.0.1         tools_4.3.1            
##  [64] lmtest_0.9-40           httpuv_1.6.15           future.apply_1.11.2    
##  [67] goftest_1.2-3           glue_1.7.0              nlme_3.1-164           
##  [70] promises_1.3.0          grid_4.3.1              Rtsne_0.17             
##  [73] cluster_2.1.6           reshape2_1.4.4          generics_0.1.3         
##  [76] gtable_0.3.5            spatstat.data_3.0-4     tidyr_1.3.1            
##  [79] data.table_1.15.4       utf8_1.2.4              XVector_0.42.0         
##  [82] spatstat.geom_3.2-9     BiocGenerics_0.48.1     RcppAnnoy_0.0.22       
##  [85] ggrepel_0.9.5           RANN_2.6.1              pillar_1.9.0           
##  [88] stringr_1.5.1           spam_2.10-0             RcppHNSW_0.6.0         
##  [91] later_1.3.2             splines_4.3.1           dplyr_1.1.4            
##  [94] lattice_0.22-6          deldir_2.0-4            survival_3.6-4         
##  [97] tidyselect_1.2.1        Biostrings_2.70.3       miniUI_0.1.1.1         
## [100] pbapply_1.7-2           knitr_1.48              gridExtra_2.3          
## [103] IRanges_2.36.0          scattermore_1.2         stats4_4.3.1           
## [106] xfun_0.47               matrixStats_1.3.0       stringi_1.8.4          
## [109] lazyeval_0.2.2          yaml_2.3.10             evaluate_0.24.0        
## [112] codetools_0.2-19        tibble_3.2.1            cli_3.6.3              
## [115] uwot_0.1.16             xtable_1.8-4            reticulate_1.37.0      
## [118] systemfonts_1.1.0       munsell_0.5.1           jquerylib_0.1.4        
## [121] Rcpp_1.0.13             GenomeInfoDb_1.38.8     spatstat.random_3.2-3  
## [124] globals_0.16.3          png_0.1-8               parallel_4.3.1         
## [127] pkgdown_2.0.9           ggplot2_3.5.1           dotCall64_1.1-1        
## [130] bitops_1.0-8            listenv_0.9.1           viridisLite_0.4.2      
## [133] scales_1.3.0            ggridges_0.5.6          leiden_0.4.3.1         
## [136] purrr_1.0.2             crayon_1.5.3            rlang_1.1.4            
## [139] cowplot_1.1.3           fastmatch_1.1-4