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Nanobody-tethered transposition enables 
multifactorial chromatin profiling at 
single-cell resolution

Tim Stuart    1,2, Stephanie Hao3, Bingjie Zhang1,2, Levan Mekerishvili    2,4, 
Dan A. Landau    2,4, Silas Maniatis    3, Rahul Satija    1,2 & Ivan Raimondi    3,4 

Chromatin states are functionally defined by a complex combination of 
histone modifications, transcription factor binding, DNA accessibility 
and other factors. Current methods for defining chromatin states cannot 
measure more than one aspect in a single experiment at single-cell 
resolution. Here we introduce nanobody-tethered transposition followed 
by sequencing (NTT-seq), an assay capable of measuring the genome-wide 
presence of up to three histone modifications and protein–DNA binding 
sites at single-cell resolution. NTT-seq uses recombinant Tn5 transposase 
fused to a set of secondary nanobodies (nb). Each nb–Tn5 fusion protein 
specifically binds to different immunoglobulin-G antibodies, enabling a 
mixture of primary antibodies binding different epitopes to be used in a 
single experiment. We apply bulk-cell and single-cell NTT-seq to generate 
high-resolution multimodal maps of chromatin states in cell culture and 
in human immune cells. We also extend NTT-seq to enable simultaneous 
profiling of cell surface protein expression and multimodal chromatin states 
to study cells of the immune system.

Several related methods were recently developed that enable individual 
aspects of chromatin state to be measured at single-cell resolution via 
an antibody-guided DNA tagmentation reaction1–3. However, chromatin 
states are characterized by combinations of factors at an individual 
locus4, including histone post-translational modifications and the 
binding of non-histone proteins to the DNA. For example, promoters are 
commonly marked by both H3K27ac and H3K4me2, whereas enhanc-
ers are marked by H3K27ac but typically lack H3K4me2. Furthermore, 
active and poised enhancers are both marked by H3K4me1 and can be 
distinguished by the presence of H3K27ac5. Therefore, multimodal 
single-cell chromatin profiling methods are required to fully charac-
terize chromatin states in heterogeneous tissues.

Most single-cell chromatin profiling methods employ protein-A/G 
fused to Tn5 transposase1–3,6,7. Protein-A/G binds to IgG antibodies, ena-
bling Tn5 to be directed to regions of the genome where an IgG antibody 
is bound and inserting adapters for DNA sequencing. As protein-A/G 

binds to IgG antibodies from different species with high affinity, such 
methods are difficult to perform in an antibody-multiplexed design 
aiming to measure multiple histone modifications in a single experi-
ment. Current approaches for multimodal chromatin profiling using 
protein-A/G, such as MulTI-Tag, involve complex experimental work-
flows with multiple wash and incubation steps7. Such methods have 
not been demonstrated to work with complex tissues6,7, thus limiting 
their broader application. We reasoned that the use of small single 
polypeptide chain antibodies (nanobodies) that specifically bind IgG 
from different species or different IgG subtypes in place of protein-A/G 
may enable the multiplexing of primary antibodies to facilitate a mul-
timodal chromatin assay8. Nanobodies bind strongly to their target 
epitope with dissociation constants (Kd) in the high picomolar scale, 
whereas protein-A/G has Kd in the low nanomolar scale9,10. Furthermore, 
nanobodies are stable under a broad temperature and pH range. We 
hypothesized that a nanobody–Tn5 (nb–Tn5) fusion would form a 
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anti-rabbit IgG nanobodies as well as isotype-specific nanobodies for 
mouse IgG1 and IgG2a. Loading nb–Tn5 fusion proteins with barcoded 
DNA adaptor sequences enables the identity of individual nb–Tn5 fusion 
proteins that generated the sequenced DNA fragment to be determined 
through DNA sequencing.

We tested each recombinant nb–Tn5 fusion in a bulk-cell 
nanobody-tethered transposition followed by sequencing (NTT-seq) 
experiment and obtained an NTT-seq library only when the nb–Tn5 
matched the target antibody, whereas the incubation of nb–Tn5 with 
the unmatched antibody resulted in no library amplification via poly-
merase chain reaction (PCR) (Extended Data Fig. 1b). Motivated by this 
result, we performed multiplexed NTT-seq aiming to profile multiple 
different chromatin features in a single experiment. In our protocol, 

stable and specific protein–protein complex with a target primary 
IgG antibody.

In this study, we engineered a set of nb–Tn5 fusion proteins and 
apply these fusion proteins in a multiplexed chromatin-profiling assay, 
measuring up to three distinct chromatin targets genome-wide simul-
taneously in single cells. We demonstrate the accuracy of multiplexed 
chromatin data obtained using our novel assay using cultured cells 
and human immune cells from the bone marrow and peripheral blood.

Results
We engineered and produced four different recombinant nb–Tn5 fusion 
proteins, specific for IgG antibodies from different species or IgG sub-
types (Fig. 1a and Extended Data Fig. 1a). This included anti-mouse and 
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Fig. 1 | Bulk-cell NTT-seq enables simultaneous profiling of multiple 
chromatin marks. a, Schematic representation of nb–Tn5 fusion proteins 
loaded with barcoded DNA adaptors. b, Overview of the NTT-seq protocol. Nuclei 
are extracted from cells and stained with a mixture of IgG primary antibodies 
for targets of interest. nb–Tn5 fusion proteins are then added and tagment 
the genomic DNA surrounding primary antibody binding sites. Released DNA 
fragments are amplified by PCR to obtain a sequencing library harboring barcode 
sequences specific for each nb–Tn5 protein used. c, Genome browser tracks 
for a representative region of the human genome. NTT-seq was performed 
on PBMCs for H3K27me3 alone (light gray), H3K27ac alone (dark gray) or for 
both together in a multiplexed experiment (red/yellow). Sequencing data were 

normalized as bins per million (BPM) mapped reads. d, Heat map displaying 
coverage within 33,205 H3K27ac peaks identified using MACS2, for multiplexed 
(multi) and non-multiplexed (mono) NTT-seq PBMC experiments. e, As for d, for 
67,459 H3K27me3 peaks. f, Fraction of reads in H3K27ac peaks for multiplexed 
and non-multiplexed NTT-seq PBMC datasets. g, As for f, for H3K27me3 peaks. 
h, Genome browser tracks for a representative region of the human genome 
for multiplexed and non-multiplexed NTT-seq K562 cell datasets. Sequencing 
data were normalized as BPM mapped reads, as for the PBMC datasets. i, Heat 
map displaying coverage centered on H3K27ac peaks for multiplexed and non-
multiplexed NTT-seq experiments using K562 cells, for RNAPII, H3K27ac and 
H3K27me3 modalities. j, As for i, for H3K27me3 peaks.
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extracted nuclei are stained in a single step using primary antibodies 
for multiple epitopes simultaneously; the excess antibody is washed; 
and nuclei are incubated with a mixture of adapter-barcoded11 nb–Tn5s, 
with each nb–Tn5 recognizing a specific IgG antibody. Subsequently, 
nb–Tn5s are activated by adding Mg2+, resulting in the tagmentation 
of genomic DNA in proximity of the primary antibody. The released 
DNA fragments harbor specific barcodes enabling the assignment 
of sequenced fragments to an individual nb–Tn5 and its associated 
primary antibody (Fig. 1b).

To test the targeting specificity of our species-specific nb–Tn5 
fusion proteins, we used antibodies for H3K27me3 and H3K27ac in bulk 
human peripheral blood mononuclear cells (PBMCs), as these marks do 
not co-occur in the genome12. Multiplexed NTT-seq resulted in libraries 
with nearly identical genomic distributions for each separate mark to 
matched NTT-seq performed on the same cells for each histone mark 
separately (Fig. 1c). The enrichment of sequenced fragments falling in 
H3K27me3 and H3K27ac peaks was approximately the same across the 
multiplexed and non-multiplexed experiments (Fig. 1d,e) and showed 
mutual exclusivity (Fig. 1f,g and Extended Data Fig. 1c). This suggests 
that multiplexed NTT-seq results in highly accurate localization of 
chromatin marks genome-wide. Then, we tested our isotype-specific 
nb–Tn5 profiling of three primary antibodies in a single experiment, 
repeating similar experiments using K562 cells staining with mouse 
IgG1 antibody against H3K27me3 and mouse IgG2a antibody against 
H3K27ac and including an additional rabbit IgG antibody for RNA poly-
merase II (RNAPII) with phosphorylated serine 2 and serine 5 (elongat-
ing RNAPII, enriched on actively transcribed genes)13. In comparison 
with a control experiment in which each of the three targets was pro-
filed individually, multiplexed NTT-seq again produced similar target 
enrichment specificity in peaks (Fig. 1h–j and Extended Data Fig. 1d), 
demonstrating the ability to profile three targets simultaneously as 
well as the ability to profile non-histone proteins.

Encouraged by the results obtained in bulk cells, we next applied 
NTT-seq to characterize multimodal chromatin states at single-cell 
resolution using the 10x Genomics scATAC-seq kit (Fig. 2a). We profiled 
H3K27me3, H3K27ac and elongating RNAPII in a mixture of 8,617 K562 
and HEK293 cells. We obtained, on average, 743 (s.d. 699) fragments 
for H3K27me3, 382 (s.d. 282) fragments for H3K27ac and 542 (s.d. 
350) fragments for RNAPII per cell, outperforming the recently devel-
oped multiCUT&Tag method6 in terms of sensitivity and specificity 
(Extended Data Fig. 2a–c and Extended Data Table 1). We projected cells 
into a low-dimensional space using latent semantic indexing (LSI) and 
uniform manifold approximation and projection (UMAP)14,15 and clus-
tered cells using a weighted combination of all three data modalities16 
(Fig. 2b). We identified two groups of cells corresponding to K562 and 
HEK293 cells. The genomic distribution of reads for each mark obtained 
in the multiplexed single-cell experiment was highly similar to data 
from the same cell lines where each feature was profiled individually 
in bulk (Fig. 2c and Extended Data Fig. 2b). Examining the distribution 
of fragments at ATAC17, H3K27me3, H3K27ac and RNAPII peaks further 
showed the co-occupancy of RNAPII and H3K27ac in open chromatin 
regions, whereas the signal for H3K27me3 was mutually exclusive 
with the other profiled marks (Fig. 2d,e). Furthermore, multiplexed 
single-cell-derived signals were highly correlated with bulk-cell signal 
for each assay profiled individually (Fig. 2d). Using a combination of 
cellular modalities provided the strongest separation of the two cell 
types in low-dimension space. When constructing a neighbor graph, 
we observed a higher fraction of a cell’s neighbors belonging to the 
same cell type as that cell when using multiple modalities (Fig. 2f). 
This highlights the value of multimodal chromatin data in measur-
ing cellular states, and, together, these results show that NTT-seq is 
an effective method for profiling multiple chromatin modalities at 
single-cell resolution.

We next sought to extend the NTT-seq method to enable simul-
taneous measurement of cell surface protein expression alongside 

multimodal chromatin states at single-cell resolution. Building on the 
recently developed CUT&Tag-pro method18, we stained a population 
of mobilized PBMCs with an oligonucleotide-conjugated panel of 173 
antibodies targeting immune-relevant cell surface proteins. Cells 
were then crosslinked, permeabilized and incubated with antibodies 
against H3K27me3 and H3K27ac, and our standard NTT-seq protocol 
followed to generate single-cell libraries. This resulted in a dataset 
of 4,684 cells with a mean of 2,854 H3K27me3 and 412 H3K27ac frag-
ments per cell (s.d. 2,953 and 356, respectively), with similar sensitiv-
ity and specificity to PBMC scCUT&Tag19 (Extended Data Fig. 3a). We 
further quantified 690 antibody-derived tag (ADT) counts per cell 
(s.d. 613), achieving a sensitivity similar to the recently demonstrated 
scCUT&Tag-pro method (Extended Data Fig. 3b)18. We clustered cells 
using a weighted combination of each modality16 and annotated cell 
clusters based on their patterns of protein expression (Fig. 3a). Pro-
tein expression patterns were concordant with cell clusters deter-
mined from a chromatin-based clustering, and we observed uniform 
expression of CD3 in T cells, mutually exclusive expression of CD4 and 
CD8, expression of CD14 in monocytes, CD19 in B cells and IL2RB in 
natural killer (NK) cells (Fig. 3b). Pseudobulk H3K27me3 and H3K27ac 
NTT-seq profiles were highly correlated with individual single-cell 
CUT&Tag-pro18 profiles for human PBMCs for the same histone marks 
(Fig. 3c). Consistent with our previous results, we also observed an 
extremely low coefficient of determination (R2 = 0.00028) between 
H3K27me3 and H3K27ac levels within peaks (Fig. 3d), further sup-
porting the accuracy of multiplexed NTT-seq single-cell profiles when 
applied to complex tissues. We observed consistency between chroma-
tin states and protein expression patterns for each cell type, supporting 
accurate cell surface protein quantification. For example, the PAX5 
locus was repressed in non-B cells with low CD19 protein expression 
and active in B cells with high CD19 expression (Fig. 3e). Similarly, the 
CD33 locus was active in monocytes with high CD33 protein expres-
sion and repressed in B cells with low CD33 expression. To evaluate 
the accuracy of our cell type classifications and multimodal chromatin 
landscapes measured by NTT-seq, we compared the results of our 
single-cell NTT-seq experiment with FACS-sorted ChIP-seq profiles 
for CD14 monocytes, CD34+ common myeloid progenitors (CMPs) 
and B cells previously published by the ENCODE consortium17. Pseu-
dobulk profiles generated from our NTT-seq cell types recapitulated 
the expected cell-type-specific ENCODE ChIP-seq profiles (Extended 
Data Fig. 3c). To evaluate the reproducibility of single-cell chromatin 
profiles measured by single-cell NTT-seq (scNTT-seq), we generated 
a second scNTT-seq dataset measuring H3K27me3 and H3K27ac in 
human PBMCs (Extended Data Fig. 3d). This dataset achieved a similar 
level of sensitivity and specificity (Extended Data Fig. 3e,f and Extended 
Data Table 1) and was highly correlated with the genome-wide chroma-
tin profiles obtained in our first PBMC dataset (Extended Data Fig. 3g), 
supporting the reproducibility of the assay.

Although cell surface protein expression information provides 
a powerful method of studying immune cells, these methods are 
of limited value outside of the immunology field. To test whether 
a low-dimensional structure similar to that obtained using protein 
expression could be learned using the chromatin data alone, we com-
pared the neighbor graphs obtained using protein expression data to 
that obtained using individual or combined chromatin modalities. 
Although individual chromatin marks were unable to faithfully recapit-
ulate the low-dimensional structure observed when including protein 
expression data, the combination of H3K27me3 and H3K27ac modali-
ties provided a similar low-dimensional neighbor structure (Fig. 3f).  
This, again, highlights the unique power of multimodal chromatin data 
in resolving cellular states and indicates that multiplexed NTT-seq may 
be a powerful method capable of characterizing heterogeneous tissues 
without the need for cell surface protein measurements.

We next sought to apply NTT-seq in a complex tissue that contains 
differentiating cells to capture chromatin remodeling dynamics that 
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Fig. 2 | NTT-seq provides accurate single-cell multimodal chromatin profiles. 
a, Schematic overview of the single-cell NTT-seq protocol. Cells are tagmented 
and processed in bulk (steps 1–3) and are encapsulated in droplets to attach  
cell-specific barcode sequences to transposed DNA fragments (steps 4–5).  
b, UMAP representations of cells profiled using multiplexed single-cell NTT-seq. 
Individual UMAP representations built using each assay are shown (left side), 
along with a visualization constructed incorporating information from all 
three chromatin modalities (WNN UMAP, right side). Cells are colored by their 
predicted cell type. c, Multimodal genome browser view of a representative 
genomic locus, for K562 cells. Fragment counts for each assay are shown, 
scaled to the maximal value for each assay within the locus. Top three tracks 
show H3K27ac, H3K27me3 and RNAPII profiled simultaneously in a single-cell 
experiment. Lower three tracks show H3K27ac, H3K27me3 and RNAPII profiled 

individually in bulk-cell NTT-seq experiments using K562 cells. d, Scatter plots 
showing normalized fragment counts for H3K27me3, H3K27ac and RNAPII 
peaks defined by ENCODE17, for bulk-cell and single-cell multiplexed NTT-seq 
experiments, for K562 cells. Peaks are colored according to their chromatin 
modality (red: H3K27me3 peak; yellow: H3K27ac peak; blue: RNAPII peak). 
Coefficients of determination (R2) between experiments are shown above 
each scatter plot. e, Ternary plot showing the relative frequency of H3K27me3, 
H3K27ac and RNAPII fragment counts within H3K27me3, H3K27ac and RNAPII 
peak regions defined by ENCODE ChIP-seq datasets. f, Fraction of a cell’s 
nearest neighbors belonging to the same predicted cell type, for neighbor 
graphs defined using a single chromatin modality or a weighted combination of 
modalities.
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Fig. 3 | Application of multiplexed scNTT-seq to human tissues. a, UMAP 
representation of PBMCs profiled using NTT-seq with protein expression. UMAPs 
for each assay are shown (left side), along with a multimodal UMAP constructed 
using all modalities (right side). Cells are colored and labeled by cell types.  
b, Patterns of cell surface protein expression in PBMCs profiled using NTT-seq. 
c, Pearson correlation between NTT-seq and scCUT&Tag-pro (CT-pro) signal 
in PBMCs within H3K27me3 and H3K27ac peaks. d, Scatter plot showing the 
number of counts per H3K27me3 and H3K27ac peak for each assay, for PBMCs 
profiled by NTT-seq. Peaks are colored according to their assay (red: H3K27me3; 
yellow: H3K27ac). Coefficient of determination (R2) is shown above. Axes: total 
fragment counts per million. e, Genome browser view of the PAX5 and CD33 
loci for B cells and CD14+ monocytes. Normalized protein expression values are 
shown alongside coverage tracks for each cell type for CD19 and CD33 protein. 
H3K27me3 and H3K27ac histone modification profiles are overlaid, with the 
signal for each scaled to the maximal signal within the genomic region shown. 

f, Fraction of cells with <25% of neighbors belonging to the same cell type, for 
neighbor graphs defined using individual chromatin modalities, cell surface 
protein expression or a combination of chromatin modalities. g, UMAP of 
BMMCs profiled using NTT-seq. Separate UMAPs for H3K27me3 and H3K27ac 
are shown (left side), and a UMAP using both H3K27me3 and H3K27ac is shown 
(right). Cells are colored and labeled by their cell type. CD14 Mono, CD14+ 
monocyte; pDC, plasmacytoid dendritic cell. h, Distribution of total fragment 
counts per cell for H3K27ac and H3K27me3. i, Pseudotime trajectory for B cell 
development. Cells are colored by their pseudotime value and labeled by their 
annotated cell type. j, Heat map showing H3K27me3 and H3K27ac signal for 10-kb 
genomic bins correlated with B cell pseudotime progression. Heat maps show 
the same genomic regions for both assays, with identical ordering of genomic 
regions. k, Expression of genes close to activated (gain H3K27ac, upper plot) or 
repressed (gain H3K27me3, lower plot) genomic regions in a separate scRNA-seq 
BMMC dataset, for cells in the B cell developmental trajectory.
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shape cellular identity. We profiled H3K27me3 and H3K27ac in human 
bone marrow mononuclear cells (BMMCs) (Fig. 3g). This resulted 
in 5,236 cells with a mean of 1,217 and 326 fragments per cell for 
H3K27me3 and H3K27ac, respectively (Fig. 3h and Extended Data Table 
1). We annotated cell clusters using a combination of label transfer 
using an annotated BMMC scATAC-seq dataset20,21 using the H3K27ac 
assay and manual annotation inspecting the presence of active and 
repressive histone marks at key marker genes for each cell type. We 
identified the expected cell types present in the immune system, 
including hematopoietic stem and progenitor cells (HSPCs) (Fig. 3g). 
Consistent with results obtained using cells in culture and PBMCs, we 
observed mutual exclusivity between H3K27ac and H3K27me3 across 
regions of the genome for BMMCs and a mean fraction of fragments in 
ENCODE peaks of 0.18 and 0.26 for H3K27me3 and H3K27ac, respec-
tively (Extended Data Fig. 4a,b). To study how multimodal chromatin 
states may change during cell development, we ordered cells belonging 
to the B cell lineage, including HSPCs, common lymphoid progenitors 
(CLPs), pre-B, B and plasma cells along a developmental pseudotime 
trajectory using Monocle 3 (ref. 22) (Fig. 3i). Although the H3K27ac 
data were more sparse than the H3K27me3 data, combining data from 
both modalities enabled a trajectory to be identified that revealed the 
expected ordering of cells in a trajectory leading from HSPCs through 
CLP, pre-B, B and plasma cells. To identify regions of the genome that 
changed their H3K27me3 and H3K27ac state across this trajectory, we 
quantified fragment counts for each cell in 10-kb bins spanning the 
entire genome for each chromatin modality. We identified genome 
bins with signal correlated with pseudotime (Pearson correlation >0.2, 
Bonferroni-corrected P < 1 × 10−8) and identified a set of 514 regions 
with opposing relationships between H3K27me3 and H3K27ac signal 
(>0.5 difference in Pearson correlation between the marks). Sorting 
these regions by the point at which they reached maximal H3K27me3 
signal revealed an ordered sequence of sites that became repressed or 
activated during B cell development (Fig. 3j). The genome bin with the 
strongest gain in H3K27ac and loss of H3K27me3 signals across pseudo-
time was located at the PAX5 promoter (H3K27me3 r = −0.70, H3K27ac 
r = 0.53), a B-cell-specific transcription factor. Of the 514 dynamic 
sites, we further identified 87 of these sites that displayed dynamic 
H3K27me3 and H3K27ac states across the B cell trajectory but were 
static in their DNA accessibility profile (|r| < 0.05, Bonferroni-corrected 
P > 0.01), as quantified in an existing BMMC scATAC-seq dataset20. This 
suggests that additional chromatin state dynamics can be identified 
using multimodal epigenomic data generated by scNTT-seq. Further 
experimental analysis will be required to fully characterize the func-
tion of these chromatin-dynamic sites in B cell development. To sys-
tematically assess the cell-type-specific expression pattern of genes 
located near genomic bins that were repressed or activated along the 
B cell pseudotime trajectory, we examined a published single-cell RNA 
sequencing (scRNA-seq) dataset for healthy human BMMCs. We identi-
fied the closest gene to each pseudotime-correlated genome bin and 
classified these as activated (positive correlation between H3K27ac and 
pseudotime) or repressed (positive correlation between H3K27me3 
and pseudotime). Examining the expression of repressed and activated 
genes in the scRNA-seq dataset revealed concordant patterns of gene 
expression, with chromatin-activated genes becoming expressed later 
in B cell development and repressed genes being expressed in HSPCs 
but turned off later in B cell development (P < 2.2 × 10−16, t-test; Fig. 3k).

Discussion
Together, these analyses demonstrate that NTT-seq datasets provide 
accurate multimodal chromatin landscapes at single-cell resolution; 
contain sufficient information to identify major cell types and states in 
primary human tissues; provide profiles that reflect high-quality bulk 
ChIP-seq data17; and can be generated in conjunction with accurate 
cell surface protein expression measurements. Existing multimodal 
chromatin technologies require complex experimental workflows and 

have not been demonstrated to work with complex tissue samples6,7 
or are strictly limited in the chromatin states that they can measure23. 
NTT-seq overcomes both of these limitations, providing a streamlined 
experimental workflow applicable to complex tissues.

Current limitations of this method, as well as other 
tagmentation-based chromatin profiling methods, include the need 
to perform tagmentation in high salt conditions to avoid open chro-
matin bias1. This may preclude the measurement of some DNA-binding 
proteins, including some transcription factors. Furthermore, the small 
number of currently available secondary nanobodies limits the number 
of different marks that can be profiled simultaneously.

We anticipate that future reagent development and protocol 
improvements will enable us to scale NTT-seq to profiling of more 
than three marks simultaneously, and we are actively working on the 
generation of additional nb–Tn5s targeting antibodies raised in dif-
ferent species, such as goat, rat, sheep and guinea pig, and multiple 
IgG isotypes within the same species. This will expand the portfolio 
of reagents for multimodal chromatin profiling. The application of 
computational integration methods18,21 may also enable composite 
profiles for many aspects of chromatin states to be generated in silico, 
beyond what is feasible to measure in a single experiment. Moreover, we 
anticipate that the use of dual-barcoded nb–Tn5 can be implemented in 
our protocol to investigate intra-locus interactions between different 
chromatin features, such as bivalent promoters or enhancers. We think 
that the simplicity with which NTT-seq achieves simultaneous profiling 
of chromatin features makes this approach particularly appealing and 
could represent the standard for multifactorial chromatin mapping 
in the future.

Conclusions
In this study, we developed a novel multifactorial chromatin-profiling 
method, NTT-seq, capable of measuring the genome-wide distribution 
of up to three different chromatin marks in bulk-cell and single-cell 
samples. NTT-seq uses a set of engineered nb–Tn5 fusion proteins 
to guide Tn5 transposition to specific sites in the genome, where 
sequence-barcoded DNA sequencing adaptors are inserted by Tn5. 
Our results demonstrate the high accuracy of multiplexed chroma-
tin profiles obtained by NTT-seq in comparison to non-multiplexed 
CUT&Tag or ChIP-seq experiments; compatibility with simultaneous 
cell surface protein expression measurement; and the application of 
NTT-seq to human tissues.
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Methods
Cell culture
K562 cells were acquired from the American Type Culture Collection 
(CCL-243). HEK293FT cells were acquired from Thermo Fisher Scientific 
(R70007). HEK293FT cells were maintained at 37 °C and 5% CO2 in D10 
medium (DMEM with high glucose and stabilized L-glutamine (Caisson,  
DML23) supplemented with 10% FBS (Thermo Fisher Scientific, 
16000044). K562 cells were maintained at 37 °C and 5% CO2 in R10 
medium (RPMI with stabilized L-glutamine (Thermo Fisher Scientific, 
11875119) supplemented with 10% FBS).

Primary cells acquisition and processing
Fresh mobilized PBMCs used for scNTT-seq with cell surface protein 
measurement were isolated within 48 hours of blood collection using 
a Ficoll (Thermo Fisher Scientific, 45-001-750) gradient according to 
the manufacturer’s recommendations and cryopreserved. Isolated 
mononuclear cells were thawed and stained according to standard  
procedures, beginning with resuspension in staining buffer  
(BioLegend, 420201) and incubation with Human TruStain FcX  
(10 minutes at 4 °C; BioLegend, 422302) to block Fc receptor-mediated 
binding. Cells were then stained with a CD34-PE-Vio770 antibody 
(20 minutes at 4 °C; Miltenyi Biotec, clone AC136, 130-113-180) and 
DAPI (Invitrogen, D1306). The samples were then sorted for DAPI−, 
CD34+ cells using a BD Influx cell sorter. Live CD34+ and CD34− cells were 
mixed 1:10 and processed with NTT-seq. BMMCs and PBMCs profiled by 
scNTT-seq without cell surface protein measurement were purchased 
from AllCells. After thawing into DMEM with 10% FBS, the cells were 
spun down at 4 °C for 5 minutes at 400g and washed twice with PBS 
with 2% BSA. After centrifugation, the cell pellet was resuspended in 
staining buffer (2% BSA and 0.01% Tween in PBS).

Cloning of nb–Tn5 plasmid constructs
Previously published sequences coding for secondary nanobodies8 
were synthesized as a gene fragment (Integrated DNA Technologies 
(IDT)) flanked by restriction enzyme sites NcoI and EcoRI. To replace 
protein A with a nanobody, 3×Flag-pA-Tn5-Fl (Addgene, 124601) and 
gene fragments were digested with NcoI and EcoRI for 1 hour at 37 °C, 
ligated overnight at 16 °C and subsequently transformed into compe-
tent cells (New England Biolabs (NEB), C2992H).

nb–Tn5 transposase production
The pTXB1-nbTn5 vector was transformed into BL21(DE3)-competent 
Escherichia coli cells (NEB, C2527), and nb–Tn5 was produced 
via intein purification with an affinity chitin-binding tag24. Then, 
400 ml of Luria broth (LB) culture was grown at 37 °C to optical 
density (OD600) = 0.6. nb–Tn5 expression was then induced with 
isopropyl-ß-d-thiogalactopyranoside (IPTG) 0.25 mM at 22 °C for 
6 hours. After induction, cells were pelleted and then frozen at −80 °C 
overnight. Cells were then lysed by sonication in 100 ml of pf HEGX 
(20 mM HEPES-KOH pH 7.5, 0.8 M NaCl, 1 mM EDTA, 10% glycerol, 0.2% 
Triton X-100) with a protease inhibitor cocktail (Roche, 04693132001). 
The lysate was pelleted at 30,000g for 20 minutes at 4 °C. The super-
natant was transferred to a new tube, and 3 µl of neutralized 8.5% poly-
ethylenimine (Sigma-Aldrich, P3143) was added dropwise to each 
100 µl of bacterial extract, gently mixed and centrifuged at 30,000g 
for 30 minutes at 4 °C to precipitate DNA. The supernatant was loaded 
on four 2-ml chitin columns (NEB, S6651S). Columns were washed 
with 10 ml of HEGX, and then 1.5 ml of HEGX containing 100 mM DTT 
was added to the column with incubation for 48 hours at 4 °C to allow 
cleavage of nb–Tn5 from the intein tag. nb–Tn5 was eluted directly into 
two 30-kDa molecular weight cutoff (MWCO) spin columns (Millipore, 
UFC903008) by the addition of 2 ml of HEGX. Protein was dialyzed in 
five dialysis steps using 15 ml of 2× dialysis buffer (100 HEPES-KOH pH 
7.2, 0.2 M NaCl, 0.2 mM EDTA, 2 mM DTT, 20% glycerol) and concen-
trated to 1 ml by centrifugation at 5,000g. The protein concentrate 

was transferred to a new tube and mixed with an equal volume of 100% 
glycerol. nb–Tn5 aliquots were stored at −80 °C.

Transposome assembly
We obtained barcoded Tn5 adaptors from IDT, as described by Amini 
et al.11, with 8-bp barcode sequences designed using FreeBarcodes25. 
To produce mosaic-end, double-stranded (MEDS) oligos, we annealed 
each barcoded T5 tagmentation oligo with the pMENT common oligo 
(100 µM each) as follows, in TE buffer: 95 °C for 5 minutes and then 
cooling at 0.2 °C per second to 4 °C (bcMEDS-A). The same process 
was used to anneal a single T7 tagment oligo with the pMENT common 
oligo (MEDS-B; Extended Data Table 2). bcMEDS-A and MEDS-B were 
mixed 1:1, and 6 µl was transferred to a new tube and mixed with 10 µl of 
nb–Tn5 enzyme after 1 hour at room temperature to allow for transpo-
some assembly. Adapter sequences are shown in Extended Data Table 2.

Antibodies
Antibodies used were H3K27ac (1:50, Active Motif, 39133), H3K27ac 
(1:50, Active Motif, 91193), H3K27ac (1:50, Abcam, ab4729), H3K27me3 
(1:50, Active Motif, 61017) and Phospho-Rpb1 CTD (Ser2/Ser5) (1:50, 
Cell Signaling Technology, 13546). For NTT-seq with surface markers 
readout on primary cells, the TotalSeq-A conjugated Human Universal 
Cocktail version 1.0 panel was obtained from BioLegend (399907).

NTT-seq
We performed NTT-seq using similar methods to those described 
previously by Kaya-Okur et al.1 (https://doi.org/10.17504/protocols. 
io.bcuhiwt6), described in detail below.

Antibody staining
For NTT-seq with surface markers readout on primary cells, 1 million 
thawed PBMCs were resuspended in 200 µl of staining buffer (2% BSA 
and 0.01% Tween in PBS) and incubated for 15 minutes with 20 µl of 
Fc receptor block (TruStain FcX, BioLegend) on ice. Cells were then 
washed three times with 1 ml of staining buffer and pooled together. 
The panel of oligo-conjguated antibodies was added to the cells to 
incubate for 30 minutes on ice. After staining, cells were washed three 
times with 1 ml of staining buffer and resuspended in 100 µl of staining 
buffer. After the final wash, cells were resuspended in 200 µl of PBS 
ready for fixation.

Fixation and permeabilization
For human cell lines, nuclei were extracted as previously described26 
and resuspended in 150 µl of PBS. Then, 16% methanol-free formal-
dehyde (Thermo Fisher Scientific, PI28906) was added for fixation 
(final concentration: 0.1%) at room temperature for 3 minutes. The 
cross-linking reaction was stopped by the addition of 12 µl of 1.25 M 
glycine solution. Subsequently, nuclei were washed once with 150 µl 
of antibody buffer (20 mM HEPES pH 7.6, 150 mM NaCl, 2 mM EDTA, 
0.5 mM spermidine, 1% BSA, 1× protease inhibitors).

For NTT-seq on PBMCs and BMMCs, 16% methanol-free formal-
dehyde (Thermo Fisher Scientific, PI28906) was added for fixation 
(final concentration: 0.1%) at room temperature for 5 minutes. The 
cross-linking reaction was stopped by the addition of 12 µl of 1.25 M 
glycine solution. Subsequently, cells were washed twice with PBS. The 
permeabilization was performed by adding isotonic lysis buffer (20 mM 
Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2, 0.1% NP40, 0.1% Tween-20, 
1% BSA, 1× protease inhibitors) on ice for 7 minutes. Subsequently, 1 ml 
of cold wash buffer (20 mM HEPES pH 7.6, 150 mM NaCl, 0.5 mM sper-
midine, 1× protease inhibitors) was added, and cells were centrifuged 
at 800g for 5 minutes at 4 °C.

Tagmentation
Nuclei or permeabilized cells were directly suspended with 150 µl 
of antibody buffer (20 mM HEPES pH 7.6, 150 mM NaCl, 2 mM EDTA, 
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0.5 mM spermidine, 1% BSA, 1× protease inhibitors) with a cocktail of 
primary antibodies and incubated overnight on a rotator at 4 °C. The 
next day, cells were washed twice with 150 µl of wash buffer to remove 
the remaining antibodies. The cells were then resuspended in 150 µl 
of high salt wash buffer (20 mM HEPES pH 7.6, 300 mM NaCl, 0.5 mM 
spermidine, 1× protease inhibitors) with 2.5 µl of nb–Tn5 for each target 
of interest and incubated for 1 hour on a rotator at room temperature. 
The cells were then washed twice with high salt wash buffer and resus-
pended in 50 µl of tagmentation buffer (20 mM HEPES pH 7.6, 300 mM 
NaCl, 0.5 mM spermidine, 10 mM MgCl2, 1× protease inhibitors). The 
samples were incubated for 1 hour at 37 °C. Tagmentation steps were 
performed in 0.2-ml tubes to minimize cell loss.

NTT-seq bulk
To stop tagmentation, 1 µl of 0.5 M EDTA, 1 µl of 10% SDS and 0.25 µl 
of 20 mg ml−1 proteinase K were added to the sample and incubated at 
55 °C for 1 hour. DNA was extracted with ChIP DNA Clean & Concentra-
tor kit (Zymo Research, D5201) following manufacturer instructions. 
To amplify libraries, 21 µl of DNA was mixed with 2 µl of a universal i5 
and a uniquely barcoded i7 primer, using a different barcode for each 
sample. A volume of 25 µl of NEBNext HiFi 2× PCR Master mix was added 
and mixed. The sample was placed in a thermocycler with a heated lid 
using the following cycling conditions: 72 °C for 5 minutes (gap fill-
ing); 98 °C for 30 seconds; 14 cycles of 98 °C for 10 seconds and 63 °C 
for 30 seconds; final extension at 72 °C for 1 minute and hold at 8 °C. 
Post-PCR clean-up was performed by adding 1.1× volume of AMPure XP 
beads (Beckman Coulter), and libraries were incubated with beads for 
15 minutes at room temperature, washed twice gently in 80% ethanol 
and eluted in 30 µl of 10 mM Tris pH 8.0.

NTT-seq single-cell encapsulation, PCR and library 
construction
After tagmentation, cells were centrifuged for 5 minutes at 1,000g, 
and the supernatant was discarded. Cells were resuspended with 
30 µl of 1× Diluted Nuclei Buffer (10x Genomics, 2000207), counted 
and diluted to a concentration based on the targeted cell number. 
The transposed cell mix was prepared as follows: 7 µl of ATAC buffer 
and 8 µl of cells in 1× Diluted Nuclei Buffer. All remaining steps were 
performed according to the 10x Chromium Single Cell ATAC proto-
col. For NTT-seq with surface markers readout on primary cells, the 
library construction method was adapted from ASAP-seq27. In brief, 
0.5 µl of 1 µM bridge oligo A (TCGTCGGCAGCGTCAGATGTGTATAA-
GAGACAGNNNNNNNNNVTTTTTTTTTTTTTTTTTTTTTTTTTTTT
TT/3InvdT/) was added to the barcoding mix. Linear amplification 
was performing using the following PCR program: 40 °C for 5 min-
utes, 72 °C for 5 minutes, 98 °C for 30 seconds; 12 cycles of 98 °C for 
10 seconds, 59 °C for 30 seconds and 72 °C for 1 minute; ending with 
hold at 15 °C. The remaining steps were performed according to the 
10x Genomics scATAC-seq protocol (version 1.1), with the following 
additional modifications:

ADTs: during silane bead elution (Step 3.1s), beads were eluted 
in 43.5 µl of elution solution I. The extra 3 µl was used for the surface 
protein tags library. During SPRI cleanup (Step 3.2d), the superna-
tant was saved, and the short DNA derived from antibody oligos was 
purified with 2× SPRI beads. The eluted DNA was combined with 
the 3 µl left aside after the silane purification to be used as input for 
protein tag amplification. PCR was set up to generate the protein tag 
library with KAPA HiFi Master Mix (P5 and RPI-x primers): 95 °C for 
3 minutes; 14–16 cycles of 95 °C for 20 seconds, 60 °C for 30 seconds 
and 72 °C for 20 seconds; followed by 72 °C for 5 minutes and ending 
with hold at 4 °C.

 RPI-x primer: CAAGCAGAAGACGGCATACGAGATxxxxxxxxGT 
GACTGGAGTTCCTTGGCACCCGAGAATTCCA
P5 primer:
AATGATACGGCGACCACCGAGATCTACAC

Sequencing
The final libraries were sequenced on NextSeq 550 by using custom 
primers (Extended Data Table 2) with the following strategy: i5: 38 bp, 
i7: 8 bp, read1: 60 bp, read2: 60 bp (for PBMC single-cell NTT-seq  
without cell surface proteins, read1: 50 bp, read2: 50 bp).

Bulk-cell data analysis
Bulk-cell data for the cell culture and PBMC datasets were mapped to 
the hg38 analysis set using bwa-mem2 with default parameters28. Out-
put BAM files were sorted and indexed using samtools29, and bigWig 
files were created using the DeepTools bamCoverage function with 
the –normalizeUsing BPM option set. Fragment files were created 
using Sinto (https://github.com/timoast/sinto), which uses the Pysam 
and htslib packages29. Multi-NTT-seq heat maps were generated in 
DeepTools30. ChIP-seq peak coordinates for H3K27me3 and H3K27ac 
for bulk PBMCs, and for H3K27me3, H3K27ac and RNAPII serine-2 and 
serine-5 phosphate for K562 cells, were downloaded from ENCODE17. 
We counted sequenced DNA fragments falling within each peak region 
for each bulk-cell PBMC or K562 cell NTT-seq dataset using custom R 
code and the scanTabix function in Rsamtools, and we normalized 
counts according to the total number of mapped reads for each dataset 
(counts per million mapped reads normalization). The coefficient of 
determination (R2) between peak counts across pairs of experiments 
was computed using the lm function in R.

Single-cell data analysis
Cell culture dataset. Read mapping. Reads were mapped to the hg38 
analysis set using bwa-mem2 (ref. 28) with default parameters; the out-
put was sorted and indexed using samtools29; and the resulting BAM 
file was used to create a fragment file using the Sinto package (https://
github.com/timoast/sinto). We ran the Sinto fragments command with 
the –barcode_regex ‘[^:]*’ parameter set to extract cell barcodes from 
the read name. Output files were coordinate-sorted, bgzip-compressed 
and indexed using tabix31, and the resulting fragment files were used 
as input to downstream analyses.

Quantification, quality control and dimension reduction. Genomic 
regions were quantified using the AggregateTiles function in Signac14 
with binsize = 10,000 and min_counts = 1, using the hg38 genome. Cells 
with <10,000 total counts, >75 H3K27ac counts, >150 H3K27me3 counts 
and >100 RNAPII counts were retained for further analysis. Each assay 
was processed by performing TF-IDF normalization on the count matrix 
for the assay, followed by LSI using the RunTFIDF and RunSVD functions 
in Signac with default parameters. Two-dimensional visualizations 
were created for each assay using UMAP, using LSI dimensions 2–10 
for each assay. Weighted nearest neighbor (WNN) analysis was per-
formed using the FindMultiModalNeighbors function in Seurat, with 
reduction.list = list(‘lsi.k27ac’, ‘lsi.k27me’, ‘lsi.pol2’) and dims = list(2:10, 
2:10, 2:10) to use LSI dimensions 2–10 for each assay. Cell clustering 
was performed using the resulting WNN graph using the Smart Local 
Moving community detection algorithm32 by running the FindClusters 
function in Seurat, with algorithm = 3, graph.name = ‘wsnn’ and resolu-
tion = 0.05. This resulted in two cell clusters, which were assigned as 
HEK or K562 based on their correlation with bulk-cell chromatin data 
for HEK and K562 cells.

Specificity analysis. K562 cell bulk ChIP-seq peaks for H3K27ac, 
H3K27me3 and RNA Pol2 Ser-2 and Ser-5 phosphate were downloaded 
from ENCODE17. Because the fraction of reads in peaks metric can be 
sensitive to the peak set used, we opted to use previously reported 
ENCODE peaks throughout our analysis as much as possible. Ser-2 
and Ser-5 phosphate peaks were combined using the reduce function 
from the GenomicRanges R package. Fragment counts for K562 cells 
in the bulk-cell and single-cell dataset were quantified for each peak 
using the scanTabix function in the Rsamtools R package, with counts 
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normalized according to the total sequencing depth for each dataset. 
To assess the targeting specificity in single-cell NTT-seq, we computed 
the coefficient of determination (R2) between peak counts for each 
pair of assays and between bulk-cell and single-cell data for the same 
assay. We visualized relative peak counts for each assay for each peak 
by creating a ternary plot using the ggtern R package33. To assess the 
low-dimensional neighbor structure obtained using each assay or com-
binations of assays, we computed the fraction of k-nearest neighbors 
for each cell i that belonged to the same cell type classification as cell 
i (k = 50 for single-modality neighborhoods and variable k per cell for 
multimodal neighbor graph due to the WNN method).

multi-CUT&Tag comparison. To create a fragment file for the pub-
lished multi-CUT&Tag dataset, raw sequencing data from Gopalan 
et al.6 were downloaded from the National Center for Biotechnology 
Information Sequence Read Archive and split into separate FASTQ files 
according to their Tn5 barcode using a custom Python script. Reads 
were mapped to the hg38 genome using bwa-mem2, and fragment 
files were created as described above for the NTT-seq datasets. Code 
to reproduce this analysis is available on GitHub: https://github.com/
timoast/multi-ct. We ran the CountFragments function in Signac to 
count the total number of fragments per cell for each multi-CUT&Tag 
assay and retained cells with >200 total counts for further analysis, as 
described in the original publication6. For mixed-barcode fragments, 
we counted ½ count to the total of each assay matching the pair of 
Tn5 barcodes. To compute the targeting specificity, we downloaded 
published ENCODE ChIP-seq peaks for H3K27me3 and H3K27ac for 
mouse embryonic stem cells (ENCFF008XKX and ENCFF360VIS) and 
computed the fraction of fragments in peak regions using the scanTabix 
function in the Rsamtools R package, normalizing counts according 
to the total sequencing depth for the dataset. We also computed the 
R2 between H3K27me3 and H3K27ac as described above, using the 
ENCODE peak regions.

PBMC datasets. Read mapping. Genomic reads were mapped and 
processed as described above for the cell culture single-cell dataset. 
ADT reads were processed using Alevin34. We first created a salmon 
index35 for the BioLegend TotalSeq-A antibody panel, with the –features 
-k7 parameters. We quantified counts for each ADT barcode using the 
salmon Alevin command with the following parameters: –naiveEqclass, 
–keepCBFraction 0.8, –bc-geometry 1[1–16], –umi-geometry 2[1–10], 
–read-geometry 2[71–85].

Quantification, quality control, and dimension reduction. Genomic 
bins were quantified using the AggregateTiles function in Signac, with 
binsize = 5,000 and min_counts = 1 to quantify 5-kb bins genome-wide, 
retaining bins with at least one count. We retained cells with <40,000 
and >300 H3K27me3 counts, <10,000 and >100 H3K27ac counts and 
<10,000 and >100 ADT counts. We normalized the ADT data using a 
centered log ratio transformation using the NormalizeData function in 
Seurat, with normalization.method = ‘CLR’ and margin = 2. We reduced 
the dimensionality of the ADT assay by first scaling and centering the 
protein expression values and running principal component analysis 
(PCA) (ScaleData and RunPCA functions in Seurat). We computed 
a two-dimensional UMAP visualization using the first 40 principal 
components (PCs) and clustered cells using the Louvain community 
detection algorithm. We identified and removed two low-quality clus-
ters containing higher overall ADT counts as well as higher counts 
for naive IgG antibodies included in the staining panel. After remov-
ing low-quality ADT clusters, we reduced the dimensionality of the 
H3K27me3 and H3K27ac assays using LSI (FindTopFeatures, RunTFIDF 
and RunSVD functions in Signac) and created two-dimensional UMAPs 
using LSI dimensions 2–30 for each chromatin assay. To construct a 
low-dimensional representation using all three data modalities, we 
ran the WNN algorithm, using the first 40 ADT PCs and LSI dimensions 

2–30 for H3K27me3 and H3K27ac (FindMultiModalNeighbors function 
in Seurat). We clustered cells using the WNN graph using the Smart 
Local Moving algorithm32 (FindClusters function in Seurat with algo-
rithm = 3 and resolution = 1). Cell clusters were manually annotated 
as cell types using the protein expression information. To compare 
the low-dimensional structure obtained using individual chromatin 
modalities or combinations of modalities, we computed for each cell 
i the fraction of neighboring cells annotated as the same cell type as 
cell i. We repeated this computation using neighbor graphs computed 
using single data modalities or weighted combinations of modalities 
computed using the WNN method.

ENCODE data comparison. Peaks and genomic coverage big-
Wig files for H3K27me3 and H3K27ac ChIP-seq published by the 
ENCODE consortium17 for B cells, CD34+ CMPs and CD14+ mono-
cytes were downloaded from the ENCODE website (https:// 
www.encodeproject.org/). We created bigWig files for each corre-
sponding cell type identified in the single-cell multiplexed NTT-seq 
PBMC dataset by writing sequenced fragments for those cells to a sepa-
rate BED file, creating a bedGraph file using the bedtools genomecov 
command36 and creating a bigWig file using the UCSC bedGraphTo-
BigWig tool. We computed the genomic coverage for NTT-seq data-
sets and ChIP-seq datasets within H3K27me3 and H3K27ac regions 
using the DeepTools multiBigwigSummary function30 with the –out-
RawCounts option set to output the raw correlation matrix as a text 
file. We computed the correlation between peak region coverage in 
NTT-seq and ENCODE ChIP-seq datasets using the cor function in R 
with method = ‘spearman’. We computed the fraction of fragments per 
cell falling in ENCODE H3K27me3 and H3K27ac ChIP-seq peak regions 
for PBMCs for each assay as described above.

CUT&Tag-pro data comparison. Processed CUT&Tag-pro H3K27me3 
and H3K27ac datasets for human PBMCs were downloaded from 
Zenodo: https://zenodo.org/record/5504061. We compared the num-
ber of ADT counts in NTT-seq and scCUT&Tag-pro datasets by extract-
ing the total number of ADT counts per cell from the scCUT&Tag-pro 
and NTT-seq Seurat objects and plotting the distribution of total 
ADT counts per cell for each dataset. We created bigWig files for each 
scCUT&Tag-pro dataset by first creating a bedGraph file using the 
bedtools genomecov function and then creating a bigWig file using 
the UCSC bedGraphToBigWig function. We computed the coverage 
for scCUT&Tag-pro datasets within H3K27me3 and H3K27ac PBMC 
ENCODE peaks using the multiBigwigSummary function in DeepTools 
as described above for the ENCODE data comparison.

BMMC dataset. Read mapping. Raw genomic reads were mapped and 
processed as described above for the cell culture single-cell dataset.

Quantification, quality control and dimension reduction. Genomic 
bins were quantified using the AggregateTiles function in Signac, with 
binsize = 5,000 and min_counts = 1 to quantify 5-kb bins genome-wide, 
retaining bins with at least one count. We retained cells with <10,000 
and >100 H3K27me3 counts and <10,000 and >75 H3K27ac counts for 
further analysis. We normalized the counts and reduced dimensionality 
for each assay by running the RunTFIDF, RunSVD and RunUMAP func-
tions in Signac and Seurat for each assay. We computed a WNN graph 
for H3K27me3 and H3K27ac using the FindMultiModalNeighbors 
function in Seurat, with reduction = list(‘lsi.me3’, ‘lsi.ac’) and dims.
list = list(2:50, 2:80) to use LSI dimensions 2–50 and 2–80 for H3K27me3 
and H3K27ac, respectively. A two-dimensional UMAP was created 
using the WNN graph by running the RunUMAP function in Seurat with 
nn.name = ‘weighted.nn’ to use the pre-computed neighbor graph. We 
clustered cells using the WNN graph using the Smart Local Moving 
community detection algorithm32 (FindClusters function in Seurat with 
algorithm = 3, resolution = 3 and graph.name = ‘wsnn’). We computed 
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the fraction of fragments per cell falling in ENCODE PBMC H3K27me3 
and H3K27ac ChIP-seq peak regions for each assay as described above.

Cell annotation. To annotate cell types, we performed label transfer21 
using the H3K27ac assay and a previously published scATAC-seq dataset 
containing healthy human bone marrow cells20. As the original publica-
tion mapped reads to the hg19 genome, we re-processed the original 
reads using the 10x Genomics cellranger-atac version 2 software with 
default parameters, aligning to the hg38 genome. Code to reproduce 
this analysis is available on GitHub: https://github.com/timoast/
MPAL-hg38. To transfer cell type labels from the scATAC-seq dataset 
to our multimodal NTT-seq dataset, we quantified scATAC-seq peaks 
using the H3K27ac assay and then performed TF-IDF normalization 
on the resulting count matrix using the IDF value from the scATAC-seq 
dataset. We performed LSI on the scATAC-seq BMMC dataset using the 
RunTFIDF and RunSVD functions in Signac with default parameters. 
We next ran the FindTransferAnchors function in Seurat, with reduc-
tion = ‘lsiproject’, dims = 2:30 and reference.reduction = ‘lsi’ to project 
the query data onto the reference scATAC-seq LSI using dimensions 
2–30, and we found anchors between the reference and query dataset. 
We ran TransferData with weight.reduction = bmmc_ntt[[‘lsi.me3’]] 
and dims = 2:50 to weight anchors using LSI dimensions 2–50 from the 
H3K27me3 assay. We used these unsupervised cell type predictions as 
a guide when assigning cell clusters to cell types.

Trajectory analysis. We subsetted the BMMC dataset to contain 
cells annotated as HSPC, GMP/CMP, pre-B, B or plasma cells. Using 
the subset object, we constructed a new UMAP dimension reduction 
by running FindTopFeatures, RunTFIDF and RunSVD in Signac, fol-
lowed by RunUMAP in Seurat with reduction = ‘lsi’, for each assay. 
We then constructed a joint low-dimensional space using the WNN 
method by running the FindMultiModalNeighbors function in Seu-
rat. We converted the Seurat object containing these cells to a Sin-
gleCellExperiment object using the as.cell_data_set function in the 
SeuratWrappers package (https://github.com/satijalab/seurat-wrap 
pers). We next ran Monocle 3 (ref. 22) using the pre-computed UMAP 
dimension reduction constructed using both chromatin modalities 
by running the cluster_cells, learn_graph and order_cells functions, 
setting the HSPC cells as the root of the trajectory. To find genomic 
features in each assay whose signal depended on pseudotime state, 
we quantified fragment counts for each cell in each 10-kb genome 
bin for the H3K27me3 and H3K27ac assays. To reduce the sparsity of 
the measured signal, we averaged counts for each genomic region 
across the cell’s 50 nearest neighbors, defined using the H3K27me3 
neighbor graph with LSI dimensions 2–20 and normalized the frag-
ment counts by the total neighbor-averaged counts per cell. For each 
genomic region, we computed the Pearson correlation between the 
signal in the genomic region and the cell’s position in pseudotime. To 
find regions that underwent coordinated activation or repression, 
we selected regions with a Pearson correlation >0.2 or <−0.2 and a dif-
ference in Pearson correlation between the H3K27me3 and H3K27ac 
assays greater than 0.5 (for example, −0.25 correlation for H3K27me3 
and +0.25 for H3K27ac). To display genomic regions in a heat map 
representation, we ordered cells based on their pseudotime rank and 
ordered genomic regions based on the position in pseudotime show-
ing maximal H3K27me3 signal. For the purpose of visualization, we 
smoothed the signal for each genomic region by applying a rolling 
sum function with cells ordered based on pseudotime, summing the 
signal over 100-cell windows. This was performed using the roll_sum 
function in the RcppRoll R package (version 0.3.0).

We used the ClosestFeature function in Signac to identify the 
closest gene to each genomic region correlated with pseudotime. 
Genomic regions where the closest gene was >50,000 bp away were 
removed (21 genes for H3K27me3 and seven genes for H3K27ac).  
To examine the gene expression patterns of these genes, we downloaded 

a previously integrated and annotated scRNA-seq dataset for the human 
bone marrow, produced as part of the HuBMAP consortium (https:// 
zenodo.org/record/5521512)20,37,38. We subset the scRNA-seq object to 
contain the same cell states that we examined in the NTT-seq data (HSC, 
LMPP, CLP, pro-B, pre-B, transitional B, naive B, mature B and plasma) 
and computed a gene module score for the active and repressed genes 
using the AddModuleScore function in Seurat.

To compare changes in scATAC-seq signal across the B cell develop-
mental trajectory, we also downloaded a previously published BMMC 
scATAC-seq dataset20 and subset the cells belonging to the B cell trajec-
tory using the published cell type annotations provided by the original 
authors. We quantified the same set of genomic regions used in the 
scNTT-seq BMMC analysis and created a similar B cell developmental 
trajectory by assigning a numeric value to each B cell type according to 
its relative position along the known developmental trajectory (1 = HSC, 
2 = CMP/LMPP, 3 = CLP, 4 = B and 5 = plasma) and computed the Pearson 
correlation between each genomic region and the B cell trajectory.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated in this study are available from the National 
Center for Biotechnology Information Gene Expression Omnibus 
(GSE212588)39 and Sequence Read Archive (SRP395379)40. Processed 
single-cell R objects are available from Zenodo (https://zenodo.org/ 
record/7102159)41. Data collected from PBMCs with cell surface pro-
tein expression are available from dbGaP (phs003068.v1.p1). nb–Tn5 
fusion plasmids developed in this study are available from Addgene 
(184285, 184286, 184287 and 184288). The following publicly available 
datasets were used in this study: GSE195725, GSE157910, GSE139369 
and GSM5227096.

Code availability
Signac 1.7.0 (ref. 14) and Seurat 4.1.0 (ref. 16) were used for all analysis and 
are available from CRAN: https://cran.r-project.org/package=Signac 
and https://cran.r-project.org/package=Seurat. Code to reproduce 
analyses is available on GitHub: https://github.com/stuart-lab/nano 
body (ref. 42). NTT-seq resources can be found at https://ntt-seq.com.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Design and evaluation of nb-Tn5. a Nanobody-Tn5 
fusion protein plasmid map schematic showing position of Tn5 and secondary 
nanobody sequences. b Agarose DNA gel showing size-separation of PCR-
amplified DNA sequencing library products for different combinations of 
nb-Tn5 and primary IgG antibody. Rabbit Ab: rabbit primary IgG antibody; 
Mouse Ab: mouse primary IgG antibody; IgG1 Ab: mouse IgG subtype 1 primary 
antibody; IgG2a Ab: mouse IgG subtype 2a primary antibody; rTn5: anti-
rabbit IgG secondary nanobody-Tn5 fusion; mTn5: anti-mouse IgG secondary 
nanobody-Tn5 fusion; G1T: anti-mouse IgG1 secondary nanobody-Tn5 fusion; 
G2aT: anti-mouse IgG2a secondary nanobody-Tn5 fusion. Gels shows expected 
library amplification product (bands between 200 and 1,000 bp) in lanes where 

the nb-Tn5 fusion matches the primary IgG antibody (rabbit Ab + rTn5; mouse 
Ab + mTn5; IgG1 Ab + G1T; IgG2a Ab + G2aT). Repicates were not performed. 
c Scatterplots showing normalized fragment counts for H3K27me3 and 
H3K27ac peaks defined by ENCODE17 for bulk multiplexed and non-multiplexed 
NTT-seq experiments in human PBMCs. Peaks are colored according to their 
chromatin modality (red: H3K27me3 peak, yellow: H3K27ac peak). Coefficient 
of determination (R2) between experiments are shown above each scatterplot. d 
Scatterplots showing normalized fragment counts for H3K27me3, H3K27ac, and 
RNAPII peaks defined by ENCODE17 for bulk multiplexed and non-multiplexed 
NTT-seq experiments in K562 cells. Peaks are colored according to their 
chromatin modality (red: H3K27me3; yellow: H3K27ac; blue: RNAPII).

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01588-5

Extended Data Fig. 2 | Data sensitivity comparison across multimodal 
chromatin profiling methods. a Total reads and fragment counts per cell for 
multiCUT&Tag6 and scNTT-seq. Read and fragment counts on y-axis are on a 
log10 scale. multiCUT&Tag profiled only two marks, H3K27ac and H3K27me3, 
and so do not have RNAPII counts. Box-plot lower and upper hinges represent 
first and third quartiles. Upper/lower whiskers extend to the largest/smallest 
value no further than 1.5x the interquartile range. Data beyond the whiskers 
are plotted as single points. b Fraction of fragments falling in ENCODE peak 

regions for H3K27me3 and H3K27ac marks, for multiCUT&Tag (red) and 
scNTT-seq (blue). Box-plots constructed as for panel A. c Scatterplot showing 
the normalized insertion counts in H3K27me3 and H3K27ac ENCODE peak 
regions for the multiCUT&Tag mESC single-cell dataset. d Multimodal genome 
browser view of a representative genomic locus, for K562 cells. Top three tracks 
show H3K27ac, H3K27me3, and RNAPII profiled simultaneously in a single-cell 
experiment. Lower three tracks show H3K27ac, H3K27me3, and RNAPII profiled 
individually in bulk-cell NTT-seq experiments using K562 cells.
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Extended Data Fig. 3 | Sensitivity and reproducibility of scNTT-seq. a Total 
read and fragment counts per cell and fraction of fragments in peaks (FRiP) for 
scCUT&Tag and scNTT-seq PBMC datasets. Box-plot lower and upper hinges 
represent first and third quartiles. Upper/lower whiskers extend to the largest/
smallest value no further than 1.5x the interquartile range. Data beyond the 
whiskers are plotted as single points. b Comparison of total unique antibody-
derived tag (ADT) counts sequenced per cell for CUT&Tag-pro18 and scNTT-seq. 
c Spearman correlation between H3K27me3 counts (top) or H3K27ac counts 
(bottom) for cells profiled using multiplexed single-cell NTT-seq, or FACS-sorted 
bulk ChIP-seq profiled by ENCODE17. d Two-dimensional UMAP projection and 

clustering for a second PBMC scNTT-seq replicate profiling H3K27me3 and 
H3K27ac. UMAP representation was constructed using both modalities, using the 
weighted nearest neighbors (WNN) method. e Scatterplots showing the number 
of fragment counts per H3K27me3 and H3K27ac ENCODE peak region for each 
assay profiled in the second PBMC scNTT-seq replicate dataset. f Total read 
and fragment count and FRiP distributions for H3K27me3 and H3K27ac assays 
profiled in the second PBMC scNTT-seq replicate dataset. g Pearson correlation 
between H3K27me3 and H3K27ac marks across PBMC scNTT-seq replicate 
datasets.
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Extended Data Fig. 4 | Accuracy of scNTT-seq applied to human BMMCs.  
a Scatterplot showing the number of counts per H3K27me3 and H3K27ac peak 
for each assay, for BMMC cells profiled using single-cell multiplexed NTT-seq. 
Peaks are colored according to their assay (red: H3K27me3 peaks; yellow: 
H3K27ac peaks). b Fraction of fragments in ENCODE peaks per cell, for H3K27ac 

and HK27me3 marks. Box-plot lower and upper hinges represent first and third 
quartiles. Upper/lower whiskers extend to the largest/smallest value no further 
than 1.5x the interquartile range. Data beyond the whiskers are plotted as single 
points.
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Extended Data Table 1 | Quality metrics of datasets generated in this work

Mean fragments per cell Total fragments standard deviation Mean fraction of fragments in ENCODE 
peaks

Dataset Total cells H3K27me3 H3K27ac RNAPII H3K27me3 H3K27ac RNAPII H3K27me3 H3K27ac RNAPII

K562 8,617 743 382 542 699 282 350 0.4 0.59 0.2

PBMC + 
protein

4,684 2,854 412 – 2,953 356 – 0.11 0.21 –

PBMC 4,770 670 731 – 1,243 1,035 – 0.1 0.28 –

BMMC 5,236 1,217 326 – 1,274 334 – 0.18 0.26 –
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Extended Data Table 2 | nb–Tn5 adapter and custom oligo sequences
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