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SUMMARY

Single-cell transcriptomics has transformed our abil-
ity to characterize cell states, but deep biological un-
derstanding requires more than a taxonomic listing
of clusters. As new methods arise to measure
distinct cellular modalities, a key analytical challenge
is to integrate these datasets to better understand
cellular identity and function. Here, we develop a
strategy to ‘‘anchor’’ diverse datasets together,
enabling us to integrate single-cell measurements
not only across scRNA-seq technologies, but also
across different modalities. After demonstrating
improvement over existing methods for integrating
scRNA-seq data, we anchor scRNA-seq experiments
with scATAC-seq to explore chromatin differences in
closely related interneuron subsets and project pro-
tein expression measurements onto a bone marrow
atlas to characterize lymphocyte populations. Lastly,
we harmonize in situ gene expression and scRNA-
seq datasets, allowing transcriptome-wide imputa-
tion of spatial gene expression patterns. Our work
presents a strategy for the assembly of harmonized
references and transfer of information across
datasets.

INTRODUCTION

Recent advances in molecular biology, microfluidics, and

computation have transformed the growing field of single-cell

sequencing beyond routine transcriptomic profiling with single-

cell RNA sequencing (scRNA-seq) (Svensson et al., 2018; Tanay

and Regev, 2017; Stuart and Satija, 2019). Indeed, new ap-

proaches now encompass diverse characterization of a single

cell’s immunophenotype (Stoeckius et al., 2017; Peterson

et al., 2017), genome sequence (Navin et al., 2011; Vitak et al.,

2017), lineage origins (Raj et al., 2018; Spanjaard et al., 2018;

Alemany et al., 2018), DNA methylation landscape (Luo et al.,

2018; Kelsey et al., 2017), chromatin accessibility (Cao et al.,

2018; Lake et al., 2018; Preissl et al., 2018), and even spatial

positioning (Moffit et al, 2018; Wang et al., 2018b; Codeluppi

et al., 2018). However, each technology has unique strengths
and weaknesses and measures only particular aspects of

cellular identity, motivating the need to leverage information in

one dataset to improve the interpretation of another.

The importance of data integration is particularly relevant for

approaches that aim to measure distinct modalities within single

cells. For example, single-cell ATAC sequencing (scATAC-seq)

can uniquely reveal enhancer regions and regulatory logic but

currently may not achieve the same power for unsupervised

cell-type discovery as transcriptomics (Cusanovich et al.,

2018; Lake et al., 2018). Similarly, methods for multiplexed

spatial RNA profiling using in situ hybridization can capture the

intricate architecture of tissue organization but are unable to pro-

file the whole transcriptome (Moffit et al., 2018). For example, the

recently introduced STARmap method enables the measure-

ment of more than 1,000 genes in spatially intact tissue but fore-

casts this number of genes as an upper limit for such approaches

without super-resolution microscopy or the physical expansion

of hydrogels (Wang et al., 2018b). The integration of different sin-

gle-cell technologies with scRNA-seq, such as spatial profiling

methods or scATAC-seq, could therefore harmonize these

data with transcriptome-wide measurements, allowing not just

for the taxonomic listing of cell types, but also a deeper under-

standing of their regulatory logic and spatial organization.

The challenges presented by single-cell data integration can

be broadly subdivided into two tasks. First, how can disparate

single-cell datasets, produced across individuals, technologies,

and modalities be harmonized into a single reference? Second,

once a reference has been constructed, how can its data and

meta-data improve the analysis of new experiments? These

questions are well suited to established fields in statistical

learning. In particular, domain adaptation aims to identify corre-

spondences across domains to combine datasets into a shared

space (Blitzer et al., 2006; Wang and Mahadevan, 2010), while

transfer learning enables a model trained on a reference dataset

to project information onto a query experiment (Raina et al.,

2007; Stein-O’Brien et al., 2019). More broadly, these problems

are conceptually similar to reference assembly (Li et al., 2010)

and mapping (Langmead et al., 2009) for genomic DNA se-

quences, and the development of effective tools for single-cell

datasets could enable similarly transformative advances in our

ability to analyze and interpret single-cell data.

Recent approaches have established the first steps toward

effective data integration. In particular, we recently introduced

the use of canonical correlation analysis (CCA) (Butler et al.,
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2018), alongside independent pioneering work leveraging the

identification of mutual nearest neighbors (MNNs) [Haghverdi

et al., 2018], to identify shared subpopulations across datasets.

While these approaches can be highly effective, they can also

struggle in cases where only a subset of cell types are shared

across datasets or significant technical variation masks shared

biological signal. New probabilistic approaches for scRNA-seq

data normalization and analysis using neural networks have

also been recently introduced, with the advantage that they

scale to very large datasets and explicitly model batch effects

(Lopez et al., 2018). However, these methods focus on scRNA-

seq and are not designed to integrate information across

different modalities, nor do they enable the transfer of informa-

tion from one dataset to another.

Here, we present a unified strategy for reference assembly

and transfer learning for transcriptomic, epigenomic, proteo-

mic, and spatially resolved single-cell data. Through the identi-

fication of cell pairwise correspondences between single cells

across datasets, termed ‘‘anchors,’’ we can transform datasets

into a shared space, even in the presence of extensive technical

and/or biological differences. This enables the construction of

harmonized atlases at the tissue or organismal scale, as well

as effective transfer of discrete or continuous data from a refer-

ence onto a query dataset. Our results, implemented in an

updated version 3 of our open-source R toolkit Seurat, present

a framework for the comprehensive integration of single-

cell data.

RESULTS

Diverse single-cell technologies each measure distinct elements

of cellular identity and are characterized by unique sources of

bias, sensitivity, and accuracy (Svensson et al., 2017). As a

result, measurements across datasets may not be directly com-

parable. For example, expression measurements for scRNA-seq

are marred by false negatives (‘‘drop-outs’’) due to transcript

abundance and protocol-specific biases (Svensson et al.,

2017; van Dijk et al., 2018), while expression derived from fluo-

rescence in situ hybridization (FISH) exhibits probe-specific

noise due to sequence specificity and background binding

(Torre et al., 2018). To address this, we developed an unsuper-

vised strategy to anchor datasets together to facilitate integra-

tion and comparison. Below, we briefly summarize the steps in

our approach, alongside a complete description in the STAR

Methods, and describe its application to diverse published and

newly produced single-cell datasets.

Identifying Anchor Correspondences across Single-Cell
Datasets
Our motivation for integrating diverse datasets lies in the poten-

tial for the information present in one experiment to inform the

interpretation of another. In order to relate different experiments

to each other, we assume that there are correspondences be-

tween datasets and that at least a subset of cells represent a

shared biological state. Inspired by the concept of MNNs, we

represent these correspondences as two cells (one from each

dataset) that we expect to be defined by a common set of

molecular features (Haghverdi et al., 2018). While MNNs have
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previously been identified using L2-normalized gene expression,

significant differences across batches can obscure the accurate

identification of MNNs, particularly when the batch effect is on a

similar scale to the biological differences between cell states. To

overcome this, we first jointly reduce the dimensionality of both

datasets using diagonalized CCA, then apply L2-normalization

to the canonical correlation vectors (Figures 1A and 1B). We

next search for MNNs in this shared low-dimensional represen-

tation. We refer to the resulting cell pairs as anchors, as they

encode the cellular relationships across datasets that will form

the basis for all subsequent integration analyses (Figure 1C).

Our anchors can successfully recover matching cell states

even in the presence of significant dataset differences, as CCA

can effectively identify shared biological markers and conserved

gene correlation patterns (Butler et al., 2018). However, cells in

non-overlapping populations should not participate in anchors,

representing an important distinction that extends our previ-

ous work.

Obtaining an accurate set of anchors is paramount to suc-

cessful integration. Aberrant anchors that form between different

biological cell states across datasets are analogous to noisy

edges that occur in k-nearest neighbor (KNN) graphs (Bendall

et al., 2014) and can confound downstream analyses. This has

motivated the use of shared nearest neighbor (SNN) graphs

(Levine et al., 2015; Shekhar et al., 2016), where the similarity

between two cells is assessed by the overlap in their local neigh-

borhoods. As this measure effectively pools neighbor informa-

tion across many cells, the result is robust to aberrant connec-

tions in the neighbor graph. We introduced an analogous

procedure for the scoring of anchors, where each anchor pair

was assigned a score based on the shared overlap of mutual

neighborhoods for the two cells in a pair (Figure 1D; STAR

Methods). High-scoring correspondences therefore represent

cases where many similar cells in one dataset are predicted to

correspond to the same group of similar cells in a second data-

set, reflecting increased robustness in the association between

the anchor cells. While we initially identify anchors in low-dimen-

sional space, we also filter out anchors whose correspondence

is not supported based on the original untransformed data

(STAR Methods). The identification, filtering, and scoring of

anchors is the first step for all integration analyses in this manu-

script, including reference assembly, classification, and transfer

learning.

Constructing Integrated Atlases at the Scale of Organs
and Organisms
To assemble a reference of single-cell datasets in Seurat v3, we

aim to identify a non-linear transformation of the underlying

data so that they can be jointly analyzed in a process concep-

tually similar to batch correction. We first identify and score

anchors between pairs of datasets (referred to as ‘‘reference’’

and ‘‘query’’ datasets) as described above (Figures 1A–1D).

As introduced by Haghverdi et al. (2018), the difference in

expression profiles between the two cells in each anchor repre-

sents a batch vector. Therefore, for each cell in the query data-

set, we aim to apply a transformation (correction vector) that

represents a weighted average across multiple batch vectors.

These weights are determined by two components: a cell



Figure 1. Schematic Overview of Reference ‘‘Assembly’’ Integration in Seurat v3

(A) Representation of two datasets, reference and query, each of which originates from a separate single-cell experiment. The two datasets share cells from

similar biological states, but the query dataset contains a unique population (in black).

(B) We perform canonical correlation analysis, followed by L2 normalization of the canonical correlation vectors, to project the datasets into a subspace defined

by shared correlation structure across datasets.

(C) In the shared space, we identify pairs of MNNs across reference and query cells. These should represent cells in a shared biological state across datasets

(gray lines) and serve as anchors to guide dataset integration. In principle, cells in unique populations should not participate in anchors, but in practice, we

observe ‘‘incorrect’’ anchors at low frequency (red lines).

(D) For each anchor pair, we assign a score based on the consistency of anchors across the neighborhood structure of each dataset.

(E) We utilize anchors and their scores to compute ‘‘correction’’ vectors for each query cell, transforming its expression so it can be jointly analyzed as part of an

integrated reference.
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similarity score, computed individually for each cell in the data-

set, and the anchor score, computed once for each anchor. The

cell similarity score is defined by the distance between each

query cell and its k nearest anchors in principal-component

space (STAR Methods), prioritizing anchors representing a

similar biological state. Consequently, cells in the same local

neighborhood will share similar correction vectors. The anchor

score prioritizes robust anchor correspondences, as described

above. By subtracting these weighted correction vectors from

the query gene expression matrix, we compute a corrected

query expression matrix that can then be combined with the

original reference dataset and used as input for all integrated

downstream analyses including dimensionality reduction and

clustering. To extend this procedure to multiple datasets, we

drew inspiration frommethods for multiple sequence alignment

(Feng and Doolittle, 1987). Here, we first construct a guide tree

based on the similarity between all pairs of datasets and pro-

ceed with recursive pairwise correction up the tree. The similar-

ity score used to construct the hierarchy is computed as the

total number of anchors between a pair of datasets normalized

to the total number of cells in the smaller dataset of the pair.
This extension for multiple dataset integration was indepen-

dently conceived but conceptually similar to the Scanorama

method (Hie et al., 2019).

We hypothesized that our anchoring method could be used to

create a reference atlas of complex human tissue by combining

diverse datasets across patients, technologies, and laboratories.

We examined a collection of eight previously published datasets

using tissue from human pancreatic islets spanning 27 donors,

five technologies, and four laboratories (Baron et al., 2016; Law-

lor et al., 2017; Grün et al., 2016; Muraro et al., 2016; Segerstolpe

et al., 2016). Before correcting for technical differences, the cells

separated by a combination of dataset of origin and cell type,

hindering downstream analysis (Figure S1A). After applying our

integration procedure, technical distinctions between datasets

were effectively removed (Figure S1B), while major and minor

cell populations could be identified through unsupervised

graph-based clustering (Figures S1C and S1D). In addition to

reliably detecting all major cell classes present in all datasets

(alpha, beta, delta, gamma, acinar, and stellate), we also de-

tected a set of extremely rare cell populations in a subset of

the datasets that could not be robustly identified through
Cell 177, 1–15, June 13, 2019 3



Figure 2. Comparison of Multi-dataset Integration Methods for scRNA-Seq

(A–H) UMAP plots of eight pancreatic islet cell datasets colored by dataset (A–D) and by cell type (E–H) after integration with Seurat v3 (A and E), Seurat v2

(B and F), mnnCorrect (C andG), and Scanorama (D andH). To challenge themethods’ robustness to non-overlapping populations, a single cell typewaswithheld

from each dataset prior to integration.

(I and J) (I) Distribution of anchor scores and counts (J), separated by incorrect (different cell types in the anchor pair) and correct (same cell type in the anchor pair)

anchors. Anchors are from the analysis in Figure S1A.

(K and L)Metrics for evaluating integration performance across the four methods on twomain properties: cell ‘‘mixing’’ across datasets (K) and the preservation of

within-dataset local structure (L; STAR Methods).

See also Figures S1 and S2 and Table S1.
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individual unsupervised clustering analyses (epsilon, schwann,

mast, and macrophage; Figure S1C).

To examine the robustness of our method to non-overlapping

populations, we removed all instances of one cell type from each

dataset (e.g., we removed all alpha cells from the celseq dataset,

all beta cells from the SMART-seq2 dataset, etc.; Table S1A). We

then repeated the same integration analysis and obtained highly

concordant results after applying this perturbation (Figure 2A).

Our robustness originates in part from the anchor scoring

approach, as we observed that erroneous anchors in which the

query and reference cells belong to different clusters were

assigned lower scores compared to consistent anchors and

therefore were given less weight in the resulting transformation

(Figure 2I). Furthermore, we observed far fewer ‘‘incorrect’’

anchors compared to correct anchors, reflecting the accuracy

of our anchor finding method (Figure 2J).
4 Cell 177, 1–15, June 13, 2019
Using these perturbed datasets, we next benchmarked the

performance of our Seurat v3 integration procedure against ex-

isting methods (Figures 2A–2H). For each tool, we aimed to

quantify how well mixed the datasets were after integration

and how well they preserved the structure present in the original

datasets (STAR Methods). Methods that perform well in both

metrics effectively match populations across datasets without

blending distinct populations together. We also calculated

silhouette coefficients based on our predefined labels, a mea-

sure of how similar a cell is to its own cluster compared to other

clusters. This gives a score in the range of �1 to +1, where a

higher score indicates higher performance. The silhouette

coefficient captures elements of both sample mixing and local

structure. Seurat v3 exhibited the highest silhouette scores

and performed well on all other metrics (Figures 2K and 2L).

We obtained equally positive results and benchmarks when
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examining six batches of murine bipolar cells, which have previ-

ously been demonstrated to exhibit batch effects (Shekhar et al.,

2016) (Figures 2J, 2K, S1E, and S1F). We conclude that our

anchoring procedure can effectively integrate diverse scRNA-

seq datasets and outperforms existing strategies for data

integration.

We also considered the potential for our procedure to

construct atlases not only at the level of individual tissues, but

also across entire organisms. To test this, we considered

recently published datasets from Tabula Muris (The Tabula

Muris Consortium, 2018b), which aimed to profile a diverse set

of murine tissues using plate (SMART-seq2)- and droplet

(10x Genomics)-based assays. These data represent an enor-

mously valuable community resource, but the utility of a single

atlas requires that the datasets be harmonized. We identified an-

chors across 97,029 single cells, representing 18 tissues (12 tis-

sues were represented in both datasets; six were only profiled

using SMART-seq2), and applied these to integrate the datasets.

Integrated visualization revealed extensive mixing of shared cell

populations across the two technologies (Figures S2A and S2B),

but cells from the six non-overlapping tissues were not mixed

and retained their structure from the original dataset (Figures

S2C and S2D). In particular, we note that this harmonized

resource provides exceptional power to detect rare populations,

such as tissue-resident plasmacytoid dendritic cells (0.07%cells

detected in nine tissues) and mesothelial cells (0.05% cells

detected in five tissues), that could not be robustly identified in

individual dataset analysis (Figure S2C, S2E, and S2F). These re-

sults suggest an analytical path forward when similar atlas-scale

datasets are generated across human tissues with diverse tech-

nologies (Regev et al., 2017).

Leveraging Anchor Correspondences to Classify Cell
States
We next extended our method to transfer information from a

reference to a query dataset. We reasoned that anchors could

be used to transfer discrete and continuous data onto query da-

tasets without modification of the reference. We first considered

the problem of cell state classification, where discrete cell labels

are learned from reference-derived models rather than being

discovered de novo by unsupervised analysis.

As with dataset integration, we approached the classification

problem by first identifying anchors between the reference and

query datasets. We use the same procedure to identify anchors,

with the option to define our search space by projecting a previ-

ously computed reference principal-component analysis (PCA)

structure onto the query data as opposed to using CCA (STAR

Methods). Projecting a query dataset onto an existing PCA struc-

ture is more efficient in cases where the query and reference

datasets do not exhibit substantial batch differences, when

working with a large reference dataset, or when classifying a

homogeneous query population. Once we identified anchors,

the annotation of each cell in the query set is achieved using a

weighted vote classifier based on the reference cell identities,

where the weights are determined by the same criteria used in

computing the correction vectors for integration (Figure 3A).

Since multiple anchors will contribute to the classification of

each query cell, these predictions are informed by a cell’s local
neighborhood, increasing the overall robustness of the classifi-

cation call. Additionally, this approach provides a quantitative

score for each cell’s predicted label. Cells that are classified

with high confidence will receive consistent votes across an-

chors, whereas cells with low confidence, including cells that

are not represented in the reference, should receive inconsistent

votes and therefore lower scores.

We tested our classification in Seurat v3 alongside recently

proposed solutions leveraging correlation and nearest-

neighbor-based classifiers: scMap-cluster and scMap-cell (Ki-

selev et al., 2018). Using the pancreatic islet and retinal bipolar

datasets previously described (Figure 2), we constructed 166

evaluation cases by splitting data into reference and query

sets. In each case, we also removed instances of a single cell

population (withheld class, e.g., alpha cells) from the reference

and then proceeded with classification (STAR Methods). We

evaluated classification accuracy by considering the percentage

of query cells assigned the correct label but also examined

whether query cells in the withheld class received the lowest

classification scores (and were therefore classified as ‘‘unas-

signed’’). Seurat v3 consistently received the highest classifica-

tion accuracy (Figures 3B and 3C) and correctly assigned low

classification scores to query cells that were not represented in

the reference (Figure 3B). We note that our increased accuracy

stems in part from our ability to use the local neighborhood of

a cell to increase the robustness of classification, while scMap

classifies each cell individually. Additionally, we found that our

incorrect predictions were associated with substantially lower

classification scores, allowing for the prioritization of high-confi-

dence calls (Figure 3D).

Projecting Cellular States across Modalities
We next examined the possibility of applying our classification

strategy to transfer cell labels across modalities. For example,

we explored whether we could classify individual nuclei from a

scATAC-seq dataset based on a reference of transcriptomic

states. The potential utility of this approach is underscored by

recent studies that have found that scATAC-seq does not

currently match the power of scRNA-seq for unsupervised dis-

covery of cell states, including a recently generated scATAC-

seq landmark resource of 100,000 nuclei from 13 mouse tissues

(Cusanovich et al., 2018). For example, 3,482 cells from the

prefrontal cortex revealed a cluster of inhibitory interneurons,

representing an exciting resource for studying the chromatin

accessibility landscape of inhibitory versus excitatory neurons,

but could not identify well-characterized interneuron subdivi-

sions. Importantly, the authors derive a ‘‘gene activity matrix’’

from the scATAC-seq profiles, utilizing observed reads at gene

promoters and enhancers as a prediction of gene activity (Pliner

et al., 2018), representing a synthetic scRNA-seq dataset to

leverage for integration.

We reasoned that if we could successfully transfer scRNA-

seq-derived class labels onto scATAC-seq profiles, we may be

able to reveal finer distinctions among the cell types. We there-

fore considered a deeply sequenced SMART-seq2 scRNA-seq

reference dataset (14,249 cells) of the mouse visual cortex

from the Allen Brain Atlas (Tasic et al., 2016, 2018) and identified

anchors between scRNA-seq and scATAC-seq using the gene
Cell 177, 1–15, June 13, 2019 5



Figure 3. Transferring Cell State Classifications across Datasets

(A) Schematic representation where identified anchors allow for the transfer of discrete labels between a reference and query dataset.

(B) Confusionmatrix for one cell type hold-out evaluation where pancreatic alpha cells were removed from the reference. Cell typeswith fewer than two cells in the

query are not shown. Alpha cells in the query consistently receive the lowest classification score and are labeled as ‘‘Unassigned.’’

(C) Classification benchmarking on 166 test/training datasets from human pancreatic islets and mouse retina.

(D) Distribution of prediction scores for one cell-type hold-out experiment (as in B). Misclassification calls are associated with lower prediction scores.

(E) Joint visualization of scRNA-seq data with classified scATAC-seq cells (left). We identified anchors between scRNA-seq data (reference) and a gene activity

matrix derived from scATAC-seq (query) datasets from the mouse visual cortex and transferred class annotations (right).

(F) We created pseudo-bulk ATAC-seq profiles by pooling together cells within each cell type. Each cell type showed enriched accessibility near canonicalmarker

genes. Chromatin accessibility tracks are normalized to sequencing depth (reads per kilobase per million mapped reads [RPKM] normalization) in each pooled

group. y axes for each track ranged from 0 to different maxima due to inherent differences in the maximum read depth at different loci. For each locus, the y axis

maximum shown is Neurod6 1,500; Gad2, Pvalb, Sst, Vip, Lamp5, and Id2 1,000, and Lhx6 600.

(G) We searched for overrepresented DNAmotifs present in PV-specific accessibility peaks and identified theMef2c and Roramotifs as the most highly enriched

motifs (p < 10�22 and p < 10�9).

(H) Both Mef2c and Rora also exhibit upregulated expression in PV interneurons from scRNA-seq.

See also Figure S3.
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activity matrix derived from scATAC-seq profiles. Joint visualiza-

tion of the two datasets (STAR Methods) suggested that similar

levels of diversity could be identified through integration (Fig-

ure 3E). Indeed, by transferring the previously published

scRNA-seq cell-type labels, we were able to confidently classify

2,420 scATAC-seq cells (projection score >0.5) into 17 clusters,

including eight excitatory and four inhibitory populations

(Table S1D). Our classifications were consistent with the pub-

lished labels derived from unsupervised analysis but revealed

substantially increased diversity. For example, 87% of the previ-

ously annotated inhibitory neuronswere classified as inhibitory in

our analysis but were split into four groups, representing both

medial ganglionic eminence (MGE)-derived (SST and PV sub-

sets) and caudal ganglionic eminence (CGE)-derived (Vip and

Lamp5) subsets. We also observed a cluster of scATAC-seq

cells (highlighted in Figure S3A) that express gene activity

markers of multiple neuronal lineages (Figure S3B) and did not

have a strong correspondence to an scRNA-seq cluster, likely

representing nuclear multiplets. Pooling nuclei within each pro-

jected class together, we obtained pseudo-bulk ATAC-seq pro-

files. This revealed cell-type-specific regulatory loci whose

accessibility profiles were consistent with expected patterns

for all inhibitory cells (Gad2), MGE-derived populations (LHX6),

and subset-specific markers (Pvalb, Sst, Vip, Id2; Figure 3F)

(Mayer et al., 2018). We focused on the PV and SST classes, rep-

resenting to our knowledge the first efforts to derive and

compare genome-wide accessibility landscapes for these

closely related interneuron subgroups.

We next performed de novo motif analysis in an attempt to

discover cis-regulatory DNA sequences that differentially regu-

late PV and SST interneurons. While few validated regulators

that drive specific interneuron fate decisions are known, we

have previously shown that the transcription factor Mef2c is

upregulated in embryonic precursors of PV interneurons and is

specifically required for their development (Mayer et al., 2018).

Strikingly, our scATAC-seq analysis revealed a strong enrich-

ment for Mef-family motifs (including Mef2c) in peaks with

increased PV accessibility, representing the highest-scoring

motif (Figure 3G). We observed other motifs for putative regula-

tors, including Rora (Sato et al., 2004) (Figure 3G). Intriguingly, as

withMef2c,Rora also exhibits RNA upregulation in PV compared

to SST interneurons (Figure 3H) andmay also play function in fate

specification. Taken together, these results highlight the role of

Mef2c and other transcription factors in establishing or maintain-

ing the chromatin landscape necessary to express the functional

receptors and transporters that establish the specific identity of

PV cells.

We performed a similar analysis in human peripheral blood

mononuclear cells (PBMCs), integrating scRNA-seq and

scATAC-seq datasets produced with the 10x Genomics Chro-

mium system (Zheng et al., 2017). We classified scATAC-profiles

into 13 transcriptional states derived from scRNA-seq clustering

(Figure S3C) and co-embed the datasets in a unified visualization

(Figures S3D and S3E). As bulk ATAC-seq data are available for

fluorescence-activated cell sorting (FACS)-sorted populations

of human immune cell subsets (Corces et al., 2016), we experi-

mentally validated our predictions by comparing FACS-sorted

ATAC-seq profiles with pseudo-bulk profiles obtained from our
classified scATAC-seq cells. We observed high concordance

between bulk and pseudo-bulk accessibility profiles for each

of the cell types, both around key marker genes (Figure S3F)

and on a genome-wide scale (Figure S3G). However, we also

identified rare cases where we were unable to identify corre-

spondences across datasets due to biological, technical, and

computational factors. While platelet cells were observed in

the scRNA-seq dataset, due to the presence of residual RNA

from their mother megakaryocyte cell, these cells are not nucle-

ated, and we correctly failed to identify any platelet cells in the

scATAC-seq dataset. However, we also observed two popula-

tions present in the scATAC-seq data that appeared to have

no match in the scRNA-seq dataset. One population displayed

a high proportion of reads mapping to genomic blacklist regions

(Figure S3H) and likely represent dead or dying cells, ambient

DNA, or a technical artifact specific to scATAC-seq. Another

population was predicted to represent CD14+ monocytes but

did not visually overlap with the CD14+ monocytes from the

scRNA-seq dataset (Figure S3I). However, we did not identify

any differences in gene activities between these groups (Fig-

ure S3I), and this separation may be an artifact of the integration

procedure. In this case, the artifact is subtle and did not prohibit

the correct discrete classification of these cells. However, this

demonstrates how exploring the underlying molecular data in

each dataset independently is an important step in interpreting

the results of an integrated analysis.

Our results demonstrate the potential for transferring scRNA-

seq-derived annotations onto chromatin accessibility data. We

emphasize that this strategy requires an initial step where

scATAC-seq data are converted to a predicted gene expres-

sion matrix (Pliner et al., 2018). Existing strategies for this task

likely assume that chromatin accessibility is positively corre-

lated with gene expression. While this assumption has generally

held true and enabled the prior interpretation of scATAC-seq

data in the developed brain (Cusanovich et al., 2018; Lake

et al., 2018), there may be cases where accessibility is a poor

proxy for transcriptional output, particularly in developing sys-

tems where chromatin changes may precede gene expression

(Lara-Astiaso et al., 2014). In these cases, we expect that

we would not be able to form consistent anchors across data-

sets. However, effective integration can occur even if only a

subset of features exhibit coordinated behavior across RNA

and chromatin modalities, similar to how cross-species

scRNA-seq datasets can be effectively integrated even when

only a subset of gene expression markers are conserved (Butler

et al., 2018).

Transferring Continuous and Multimodal Data across
Experiments
Though we previously demonstrated how anchors could be uti-

lized to transfer discrete classifications across datasets, we

reasoned that the same methods could be used to transfer

continuous data as well. This is of particular interest for the

growing suite of multimodal single-cell technologies that mea-

sure multiple aspects of cellular identity. Transfer learning could

therefore be used to fill in missing modalites in key datasets. For

example, the Human Cell Atlas (HCA) recently released a freely

available resource of 274,932 healthy bone marrow cells from
Cell 177, 1–15, June 13, 2019 7
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eight donors (Li et al., 2018). This represents an extraordinary

community resource to study the human immune system but

does not contain cell-surface protein measurements, which

could substantially improve the ability to interpret and annotate

this resource. We hypothesized that by generating a human

bone marrow dataset with our recently developed CITE-seq

technology (Stoeckius et al., 2017), where immunophenotypes

are measured in parallel with transcriptomes, we could effec-

tively transfer protein expression data to the HCA dataset. Addi-

tionally, we highlight that this method can be successful even in

the absence of correlation between RNA and protein for individ-

ual genes (e.g., between Cd4 transcript and CD4 protein),

though it does require that a combination of genes exhibit

expression patterns that are correlated with cellular immunophe-

notype (e.g., modules of markers for CD4+ T cells).

Predicting Protein Expression in Human Bone
Marrow Cells
We performed a CITE-seq experiment on human bone marrow

cells (Stoeckius et al., 2017), capturing 33,454 cells for which

we measured cellular transcriptomes alongside 25 cell-surface

proteins representing well-characterized markers (median

4,575 RNA unique molecular identifiers [UMIs] and 2,312 anti-

body-derived tag [ADT] UMIs per cell; Tables S1C and S1D;

Data S1). We first performed cross-validation within the CITE-

seq data by randomly assigning cells to a reference or query da-

taset and identified anchors between them. As with our discrete

classifications, we predicted protein levels in the query dataset

using a weighted average of CITE-seq counts from the reference

anchor cells, whichwe then comparedwith the original measure-

ments (Figure 4A).

For most proteins (23 of 25), we observed strong correlation

between the measured and imputed expression levels (Figures

4A and 4B; median R = 0.826), with the remaining residual en-

compassing background CITE-seq binding (perhaps driven by

differences in cell size), stochastic variation in protein expres-

sion, or technical noise. In the two cases where we observed

poor correlations, either poor antibody specificity or a lack of

transcriptomic markers that correlate with immunophenotype

could explain these results. Indeed, examination of the patterns

of expression for these two proteins (CD25 and CD197-CCR7)

show sporadic ADT binding across all cells, indicating a possible

non-specific binding of the antibody confounding the biological

signal (Data S1). By downsampling RNA features used to identify

anchors and repeating the cross-validations, we found that pre-

diction accuracy began to saturate at approximately 250–500

features (Figure 4B), suggesting that only a subset of shared

genes need to be measured across experiments in order to

transfer additional modalities across datasets.

Having demonstrated our ability to accurately impute immu-

nophenotypes, we next transferred protein expression data

from our CITE-seq experiment to the HCA bone marrow

resource of 274,932 cells across eight human donors (Li et al.,

2018) after first integrating the eight donor datasets using Seurat

v3 to mitigate batch effects (Figures 4C and S2G). Encourag-

ingly, our imputed immunophenotypes were consistent with

the well-studied expression patterns of key markers in the he-

matopoietic system (Data S1), including high predicted CD34
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expression in early hematopoietic progenitors, mutual exclusiv-

ity between CD8a and CD4 expression, and canonical marker

expression in monocytes (CD14), natural killer (NK) cell (CD16/

CD56), and B cell (CD19) populations. Intriguingly, we identified

a subpopulation of CD8+ memory cells marked by sharply

elevated predicted expression of CD69 (Figure 4C). While

CD69 has been proposed as an early activation marker of

T cells (Testi et al, 1989), the molecular phenotype and signifi-

cance of CD8+CD69+ cells in the bonemarrow is not well under-

stood. Recent evidence in particular suggests that CD8+ cells

upregulate this marker without accompanying changes in the

transcriptome and that the transcriptome of these cells is in a

resting state (Okhrimenko et al., 2014). We therefore sought to

identify genes whose measured expression in the HCA data

was associated with predicted CD69 expression.

We observed a clear module of genes associated with

increased CD69 expression across all eight human donors (Fig-

ure 4D), including cytokines, chemokines, and granzyme mole-

cules, with ontology analysis revealing striking enrichment for

genes involved in interferon (IFN)-g responses (p < 10�11; Fig-

ure S2H). We validated this finding by sorting CD8+/CD69+

and CD8+/CD69� T cells, performing bulk RNA-seq (four repli-

cates each) and observing differential expression of our top

markers (Figure 4E). Importantly, while we observed similar

CD69+ heterogeneity in an independent analysis of the original

CITE-seq dataset (Data S1), this dataset contained an order-

of-magnitude fewer cells and, as a result, exhibited substantially

lower power to detect genes associated with CD69 expression.

To quantify this, we ordered cells in the CITE-seq and HCA data-

sets along an axis of CD69 expression and computed Moran’s I

statistic, a measure of spatial autocorrelation, for each gene. We

consistently observed substantially higherMoran’s I values in the

HCA dataset and could not identify key inflammatory genes

(including IFNG) as outliers from the CITE-seq data alone (Fig-

ure 4F). Further experiments are needed to reveal the functional

importance of this population, but notably, secretion of inflam-

matory cytokines like IFN-g can alter the bone marrow microen-

vironment and hematopoietic output (de Bruin et al., 2014).

Taken together, these results demonstrate how transfer learning

can be used to facilitate biological discovery across datasets

and to impute missing modalities in key resources.

Spatial Mapping of Single-Cell Sequencing Data in the
Mouse Cortex
As a final demonstration of transfer learning using our Seurat v3

method, we explored the integration of multiplexed in situ single-

cell gene expression measurements (FISH) with scRNA-seq of

dissociated tissue. While we and others (Satija et al., 2015;

Achim et al., 2015; Karaiskos et al., 2017; Halpern et al., 2017)

have previously demonstrated analytical strategies tomap single

cells to their original spatial position, these strategies require the

tissue to have a stereotypical structure and rely heavily on tran-

scriptional gradients to facilitate the spatial mapping of cells. In

principle, the harmonization of multiplexed FISH or in situ RNA-

seq with scRNA-seq would enable similar goals to be achieved

for any biological system, a challenge that is of paramount

importance to understand the spatial organization and regulation

of cells and tissues. While imaging datasets have an upper limit



Figure 4. Imputing Immunophenotypes in a Transcriptomic Atlas of the Human Bone Marrow

(A) Cross-validations for immunophenotype imputation performed using a CITE-seq dataset of 35,543 bone marrow cells and 25 surface proteins.

(B) Prediction accuracy as a function of the number of transcriptomic features used to determine anchors.

(C) We integrated 274,932 bone marrow cells produced by the HCA and annotated the cell types. Using the CITE-seq bone marrow cells, we predicted protein

expression levels in the integrated HCA dataset and observed expression patterns consistent with the known cell types.

(D) Predicted CD8+ CD69+ cells upregulate a module of inflammatory cytokines and chemokines across all eight donors. Shown are averaged RNA expression

values for each human donor.

(E) We validated CD69+ marker genes identified in the scRNA-seq data by performing bulk RNA-seq on FACS-isolated CD8+ CD69+/� cells, which revealed a

similar set of differentially expressed genes.

(F) We ordered CD8+memory cells by their CD69 expression in the HCA and CITE-seq datasets and computed the autocorrelation for each gene along this CD69

axis (Moran’s I). CD69+ marker genes consistently showed a higher Moran’s I value in the HCA dataset, reflecting the increased statistical power accompanying

an order-of-magnitude greater cell number.

See also Data S1.
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Figure 5. Spatial Patterns of Gene Expression in the Mouse Brain

(A) Schematic representation of data transfer between scRNA-seq and STARmap datasets. After identifying anchors using the subset of genes measured in both

experiments, we subsequently transfer sequencing data to the STARmap cells, predicting new spatial expression patterns.

(B) Leave-one-out cross-validation for eight genes exhibiting predicted expression patterns and original STARmap measurements.

(C) Gene expression patterns for Rorb, Syt6, Lamp5, and Sox10 as measured by osmFISH, a highly sensitive single-molecular assay (Codeluppi et al., 2018), in

the mouse somatosensory cortex.

(D) Predicted expression patterns for four genes not originally profiled by STARmap, with external validation in Data S2.

(E) Correlation between Moran’s I value, a measure of spatial autocorrelation, for each predicted gene expression pattern in two STARmap replicates. Marker

genes for VLMCs, endothelial cells, and perivascular macrophages are highlighted, reflecting rare cell subsets that were spatially restricted in only one replicate.

(F) Horizontally compressed STARmap cells with predicted cell type transferred from the SMART-seq2 dataset.

(G) Expression of cell-type marker genes in each predicted STARmap cell type (both replicates combined).
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on the number of dimensions that can be simultaneously profiled

per cell, our previous results indicated that only a subset of tran-

scriptomic features were necessary to facilitate integration (Fig-

ure 4B). We therefore considered two complementary datasets

of the mouse visual cortex, the deeply sequenced SMART-

seq2 (v4 kit) dataset from the Allen Brain Institute (Tasic et al.,

2018) (as in Figure 3E; 14,249 cells, 34,617 transcripts), and

the recently published STARmap in situ gene expression data-
10 Cell 177, 1–15, June 13, 2019
sets of the same tissue (1,539 and 890 cells, 1,020 genes)

(Wang et al., 2018b).

After identifying anchors between the datasets, we imputed

spatial expression patterns across the transcriptome by

transferring the expression of all measured scRNA-seq tran-

scripts onto the STARmap datasets (Figure 5A). For genes

with well-established spatial patterns of expression (e.g., the

layer-specific marker genes Lamp5 and Cux2), our imputed
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patterns were concordant with the measured STARmap data

(Figure 5B; Data S2). Similarly, genes that were cell-type spe-

cific but not spatially restricted (e.g., the interneuron subtype

marker Sst) also exhibited identical patterns in the imputed

and measured data. However, we also observed cases where

the original STARmap data exhibited a weak signal that was

strengthened in the imputed data (for example, Rorb and

Syt6). These cases could reflect stochastic cellular expression,

technical noise in the STARmap data, or imputation errors—

although our predictions here were further supported by an

independently derived, highly sensitive cyclic single-molecule

FISH (osmFISH) experiment (Codeluppi et al., 2018) (Figure 5C).

By transferring the remaining scRNA-seq genes onto spatially

resolved cells, we were further able to predict spatial patterns

for genes that were not originally profiled by STARmap. We

identified four representative cases (Figure 5D), each of which

contains strong external support in the published literature

(Syken and Shatz, 2003; Venkatadri and Lee, 2014) or the Allen

Brain Atlas (Tasic et al., 2016, 2018) (Figure S4B). Moreover,

when repeating the imputation procedure on a second inde-

pendent STARmap replicate (890 cells), we found that our

gene-level predictions for spatial association were highly repro-

ducible, with the exception of a small group of genes with

different Moran’s I values in both replicates (Figure 5E). Further

analysis of the genes with higher Moran’s I values in replicate 1

revealed that they largely represented markers of endothelial

cells and perivascular macrophages, while genes with a higher

Moran’s I in replicate 2 were predominantly markers for

vascular and leptomeningeal cells (VLMCs). As replicate 1 con-

tained a strip of endothelial cells and replicate 2 contained a

longer spatially restricted section of VLMCs (Figure S4A), the

differences in Moran’s I values between replicates for these

genes reflects real biological differences in the spatial struc-

tures of the two tissue sections.

We performed the same leave-one-out cross-validation impu-

tation procedure using Drop-seq data from the mouse prefrontal

cortex (Saunders et al., 2018) and identified strikingly similar

imputed spatial patterns across both scRNA-seq technologies

(Data S2), as well as strong agreement at single-cell resolution

when imputing using either dataset (Figures S5A and S5D).

These results indicate that the increased cell number from

Drop-seq can compensate for the reduced per-cell sequencing

depth, consistent with previous power analyses for cell-type dis-

covery (Shekhar et al., 2016). However, we observed a subset of

genes that were too lowly expressed to be accurately quantified

by Drop-seq (Figure S5B), resulting in inconsistent spatial impu-

tation results. Moreover, we also observed rare cases where

highly expressed genes exhibited subtle differences in their

scRNA-seq expression patterns across technologies (i.e.,

Cux2; Figure S5C), which also drove subtle changes in spatial

imputation (Data S2).

The STARmap dataset measured the expression of 1,020

genes, but extensive correlation structure in transcriptomic

data suggests that we can achieve similar prediction accuracy

using a reduced subset of these genes. We randomly down-

sampled the STARmap gene set from 50 to 1,000 genes and

evaluated the imputation accuracy using the downsampled

gene sets (Figure S5E). These results suggested that imputation
accuracy starts to saturate between 200 and 300 features

for many genes, particularly those with high expression

‘‘redundancy’’ in the dataset (Figure S5F). Furthermore, when

applying a downsampling strategy guided by cluster markers

instead of random downsampling, we observed additional im-

provements when using a reduced feature set (Figure S5G;

STAR Methods). Together, these analyses demonstrate that

integration can be successful even when using more sparse

sequencing approaches alongside spatial technologies that

measure hundreds of markers in situ (Moffit et al., 2018).

As we previously demonstrated using scATAC-seq data, our

anchoring procedure allows us to classify cells across modal-

ities based on scRNA-seq annotations. We therefore trans-

ferred cell-type labels from the SMART-seq2 dataset to the

STARmap cells, classifying 1,915 (79%) of cells with prediction

score >0.5, but conservatively chose to consider the 1,210

(50%) cells with the highest prediction scores for downstream

analysis (Figure 5F; STAR Methods). These classifications re-

vealed subdivisions that could not be identified even through

iterative clustering of the original dataset (Figures S4C–S4F).

For inhibitory cells, we identified cells from the four major clas-

ses (Sst, Pvalb, Lamp5/Id2, Vip), each expressing canonical

markers in the original STARmap dataset (Figure 5G). In

excitatory cells, we annotated cells from eight different clus-

ters, representing not only layer-specific populations, but also

separating intratelencephalic (IT), pyramidal tract (PT), cortico-

thalamic (CT), and L6b sublayer populations within individual

layers (Figures 5F and 5G).

Lastly, we examined the spatial distribution of our annotated

cell types, searching for non-random patterns. As previously re-

ported, MGE-derived interneurons were enriched in layers 4 and

5, CGE-derived interneurons were enriched in layers 1–3, and

excitatory populations were strongly associated with individual

layers (Figure 5F) (Tasic et al., 2018). However, after closely

examining the mapping patterns, we observed differences in

the laminar distributions for neurons even within the same layer,

including IT and PT neurons (layer 5) and IT and CT neurons

(layer 6), suggesting a complex interplay between excitatory

specification and within-layer spatial positioning. These results

were reproduced in the second STARmap replicate dataset (Fig-

ure S4A; Data S2), but the functional consequences remain to be

explored. We conclude that anchoring imaging and sequencing

datasets enables the transcriptome-wide prediction of spatial

expression patterns, and the harmonization of scRNA-seq-

derived cell-type labels with in situ gene expression datasets.

As multiplexed image-based single-cell methods and datasets

continue to grow and develop, the integration of sequencing

and imaging datasets therefore represents a powerful and

exciting opportunity to construct high-resolution spatial maps

of any biological system.

DISCUSSION

We have developed a strategy for the comprehensive integration

of single-cell data and apply this to derive biological insights

jointly from transcriptomic, epigenomic, proteomic, and spatially

resolved single-cell data. Our strategy tackles several technical

challenges, starting with the unsupervised identification of cell
Cell 177, 1–15, June 13, 2019 11
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pairs across datasets, deemed anchors, that represent a similar

biological state. This enables us to either assemble multiple da-

tasets into an integrated reference or to transfer data and meta-

data from one experiment to another. We anticipate that as

scRNA-seq experiments have only recently become routine,

the challenge of reference assembly will be of particular impor-

tance to both small labs and large consortia, as new experiments

will continually uncover increasingly rare and subtle biological

states. However, as these references begin to stabilize, projec-

ting both discrete labels and continuous data onto new datasets

will be of transformative value to their interpretation, analogous

to how short-read mapping enabled the rise of multiple geno-

mics technologies (Langmead et al., 2009; Trapnell et al.,

2009). Throughout multiple examples in this manuscript, we

demonstrate how integrated analysis can reveal biological in-

sights that require the cluster identification and annotation

inherent to scRNA-seq analysis but could not be identified by

any single experiment. In particular, we derive in silico bulk

ATAC-seq profiles for finely resolved interneuron subsets whose

identities can be classified with the assistance of transcriptomic

data, as well as identifying cell surface proteins that can suc-

cessfully enrich for transcriptomically defined T cell subsets in

human bone marrow. Lastly, we demonstrate how scRNA-seq

and in situ gene expression data can be integrated to robustly

predict spatial expression patterns transcriptome-wide and

even to identify high-resolution spatial relationships between

closely related neuronal subtypes.

Our integration strategy builds upon previous work in the

application of CCA to identify shared sources of variation across

experiments (Butler et al., 2018) and the concept of mutual near-

est neighbors to identify biologically matched cells in a pair of da-

tasets (Haghverdi et al., 2018). Furthermore, we leverage ideas

from the construction of SNN graphs to score, identify, and

downweight the contribution of inaccurate anchors to substan-

tially increase integration robustness. Each of these steps is in-

tegral to the improved performance of our method and, in partic-

ular, the ability to perform integration across modalities and

diverse technologies.

We expect our strategy to be broadly applicable to integrate

and transfer a broad spectrum of single-cell data and pheno-

types across experiments. These include additional epigenomic

(Luo et al., 2018; Kelsey et al., 2017; Cao et al., 2018; Lake et al.,

2018; Preissl et al., 2018), chromosome conformation (Ramani

et al., 2017; Nagano et al., 2013), and RNA modification (Safra

et al., 2017) measurements that are increasingly being profiled

at the single-cell level. We believe that the integration of

sequencing and imaging datasets represents a particularly

promising application in the near future. Recent work based on

the spatial analysis of protein panels (Goltsev et al., 2018; Keren

et al., 2018) has poignantly demonstrated how changes in tissue

organization can dramatically shift across disease states. By

integrating single-cell transcriptomics with spatial datasets,

these analyses can consider not only broadly defined cell types,

but also subtle alterations in cell state, even for genes that are not

directly measured in an imaging probe set. Future extensions

could utilize these molecular data to assist in the image align-

ment of multiple datasets or even integrate with perturbation

screens to help infer causal relationships (Dixit et al., 2016).
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These opportunities will ensure the continued development of

complementary tools and strategies for single-cell data integra-

tion. For example, Welch et al. (2019) have recently introduced

LIGER, which leverages integrative non-negative matrix factor-

ization (NMF) to identify shared and specific sources of variation

across datasets. Both Seurat v3 and LIGER enable batch-effect

correction and cross-modality integration, and while the

methods have conceptually similar aims, they return comple-

mentary outputs. NMF returns factors that characterize biolog-

ical sources of variation and can be highly interpretable (Welch

et al., 2019). In contrast, Seurat v3 has the ability to return a cor-

rected expression matrix or to impute query features from a

reference dataset—both of which can be used as input to addi-

tional methods such as pseudotime or network reconstruction

(Qiu et al., 2017; Langfelder and Horvath, 2008). We anticipate

that users, with diverse biological questions and analytical chal-

lenges, will find broad utility for both approaches.

Lastly, our results suggest that scRNA-seq can serve as a gen-

eral mediator for single-cell data integration. Not only is its

application commercialized and routinely available, but also,

transcriptome-wide gene expression data encode multiple as-

pects of cellular identity and ‘‘metadata,’’ even if they are lost

during the experimental process. Moreover, its intermediate

position in the central dogma allows for proximity to multiple mo-

lecular processes, including transcriptional, posttranscriptional,

and translational regulation. We therefore suggest that scRNA-

seq may serve as a ‘‘universal adapter plug’’ for single-cell

analysis, facilitating integration across multiple technologies

and modalities, and enable a deeper understanding of cellular

state, interactions, and behavior.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD3 BioLegend Cat# 300475

CD56 BioLegend Cat# 363557

CD19 BioLegend Cat# 302259

CD11c BioLegend Cat# 371519

CD38 BioLegend Cat# 102733

CD45RA BioLegend Cat# 304157

CD123 BioLegend Cat# 306037

CD127 BioLegend Cat# 351352

CD4 BioLegend Cat# 300563

CD8a BioLegend Cat# 301067

CD14 BioLegend Cat# 301855

CD16 BioLegend Cat# 302061

CD25 BioLegend Cat# 302643

CD45RO BioLegend Cat# 304255

CD69 BioLegend Cat# 310947

CD197 BioLegend Cat# 353247

CD161 BioLegend Cat# 339945

CD28 Custom made Clone CD28.2

CD27 BioLegend Cat# 302847

HLA-DR BioLegend Cat# 307659

CD57 Custom made Clone QA17A04

CD79b BioLegend Cat# 341415

CD11a BioLegend Cat# 350615

CD34 BioLegend Cat# 343537

Hashtag 1 Cell Hashing antibody BioLegend Cat# 394601

Hashtag 2 Cell Hashing antibody BioLegend Cat# 394603

Hashtag 3 Cell Hashing antibody BioLegend Cat# 394605

Hashtag 4 Cell Hashing antibody BioLegend Cat# 394607

Hashtag 5 Cell Hashing antibody BioLegend Cat# 394609

Hashtag 6 Cell Hashing antibody BioLegend Cat# 394611

Hashtag 7 Cell Hashing antibody BioLegend Cat# 394613

Hashtag 8 Cell Hashing antibody BioLegend Cat# 394615

Hashtag 9 Cell Hashing antibody BioLegend Cat# 394617

Hashtag 10 Cell Hashing antibody BioLegend Cat# 394619

Biological Samples

Human bone marrow cells AllCells Cat# ABM007F, lot 3008803

Critical Commercial Assays

30 scRNA-seq kit 10x Genomics V2 chemistry

Deposited Data

Human bone marrow – CITE-seq This paper GEO: GSE128639

Pancreas – CelSeq Grün et al., 2016 GEO: GSE81076

Pancreas – CelSeq2 Muraro et al., 2016 GEO: GSE85241

Pancreas – FluidigmC1 Lawlor et al., 2017 GEO: GSE86469

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Pancreas – SMART-seq2 Segerstolpe et al., 2016 E-MTAB-5061

Pancreas – InDrops Baron et al., 2016 GEO: GSE84133

Retinal bipolar cells – Drop-seq Shekhar et al., 2016 GEO: GSE81904

Tabula muris – SMART-seq2 The Tabula Muris Consortium, 2018b https://figshare.com/articles/Single-cell_RNA-seq_

data_from_Smart-seq2_sequencing_of_FACS_

sorted_cells_v2_/5829687/1

Tabula muris – 10x Genomics The Tabula Muris Consortium, 2018b https://figshare.com/articles/Single-cell_RNA-seq_

data_from_microfluidic_emulsion_v2_/5968960/1

Bone marrow – 10x Genomics The Human Cell Atlas https://preview.data.humancellatlas.org/

osmFISH Codeluppi et al., 2018 http://linnarssonlab.org/osmFISH/availability/

STARmap Wang et al., 2018a https://www.starmapresources.com/data/

Mouse prefrontal cortex – SMART-seq2 The Allen Institute for Brain Science http://celltypes.brain-map.org/api/v2/well_known_

file_download/694413985.

Mouse cortex – sci-ATAC-seq Cusanovich et al., 2018 http://atlas.gs.washington.edu/mouse-atac/data/

Human PBMCs – scATAC-seq 10x Genomics https://support.10xgenomics.com/single-cell-

atac/datasets/1.0.1/atac_v1_pbmc_10k

Human PBMCs – scRNA-seq 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/datasets/3.0.0/pbmc_10k_v3

Mouse cortex – Drop-seq Saunders et al., 2018 http://dropviz.org/

Software and Algorithms

Seurat v3.0.0 This paper https://github.com/satijalab/seurat/releases/

tag/v3.0.0

Seurat v2.3.3 Butler et al., 2018 https://github.com/satijalab/seurat/releases/tag/

v2.3.3

Scran v1.6.9 Lun et al., 2016 http://bioconductor.org/packages/scran

Scanorama commit b83e1ba87e6635825

e155046b884dee2154c5d34

Hie et al., 2019 https://github.com/brianhie/scanorama

scmap v1.1.5 Kiselev et al., 2018 http://bioconductor.org/packages/scmap

Scrublet v0.1 Wolock et al., 2019 https://github.com/AllonKleinLab/scrublet

CellRanger v2.2.0 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/

installation

CITE-seq-count v1.2 Patrick Roelli https://github.com/Hoohm/CITE-seq-Count

Drop-seq tools v2.0.0 McCarroll Lab https://github.com/broadinstitute/Drop-seq

deepTools v3.1.2 Ramı́rez et al., 2016 https://github.com/deeptools/deepTools

GOstats v2.44.0 Falcon and Gentleman, 2007 http://bioconductor.org/packages/GOstats

Homer v4.10 Heinz et al., 2010 http://homer.ucsd.edu/homer/

R R Core https://www.r-project.org/

Python Python Software Foundation https://www.python.org/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rahul

Satija (rsatija@nygenome.org).

METHOD DETAILS

Seurat integration method
The Seurat v3 anchoring procedure is designed to integrate diverse single-cell datasets across technologies andmodalities. To facil-

itate the assembly of datasets into an integrated reference, Seurat returns a corrected data matrix for all datasets, enabling them to

be analyzed jointly in a single workflow. To transfer information from a reference to query dataset, Seurat does not modify the
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underlying expression data, but instead projects either discrete labels or continuous data across experiments. While the use cases

for each approach will depend on the user and particular experiment, the underlying methods are conserved across approaches.

When possible in the methods, we specify the function in Seurat where the method is implemented, to facilitate users exploring

the source code, which is freely available at https://satijalab.org/seurat.

Our approach consists of four broad steps, as explained in detail below: (1) data preprocessing and feature selection, (2) dimension

reduction and identification of ‘‘anchor’’ correspondences between datasets, (3) filtering, scoring, and weighting of anchor corre-

spondences, (4) data matrix correction, or data transfer across experiments.

Parameters for Seurat v3 integration
To exemplify the general utility of our approaches, we aimed to minimize the free parameters that can be tuned for each analysis and

to utilize default parameters in all cases. All parameters are described throughout the methods, even when their default values are

fixed for all analyses in this manuscript.

One parameter we expect to fluctuate across datasets represents the estimated ‘‘dimensionality’’ of the data. This affects, for

example, the number of principal components or canonical correlation vectors that are calculated during dimensional reduction.

Larger datasets will typically have increased dimensionality, particularly if they represent increasingly heterogeneous populations.

While we have previously suggested using saturation or statistical-resampling based approaches to estimate dataset dimensionality

[Butler et al., 2018], a robust fully unsupervised procedure to identify this value remains a fundamental challenge in the analysis of

high-dimensional data. Here, we neglect to finely tune this parameter for each dataset, but still observe robust performance over

diverse use cases. For all neuronal, bipolar, and pancreatic analyses we choose a dimensionality of 30. For scATAC-seq analyses

in the mouse cortex, we chose a dimensionality of 20. For analyses of human bone marrow and the integration of mouse cell atlases,

we choose a dimensionality of 50 and 100 respectively, representing the significant increase in dataset size and heterogeneity for

these cases.

We also allow for the use of approximate nearest neighbor methods, using the RANN package in R [Arya et al., 2018; Mount, 2010].

While not enabled by default, the user can set the error bound parameter (eps) to increase the speed of nearest neighbor identifica-

tion. This parameter is set to 0 by default, but for analyses where more than 50,000 cells are analyzed in total (Figures 4 and S2), we

set this value to 1. Unless otherwise specified, all other quantitative parameters are fixed to default values.

Data preprocessing
Normalization

For all analyses, we employed standard pre-processing for all single-cell RNA-seq datasets. Unless otherwise specified, we first per-

formed log-normalization of all datasets, using a size factor of 10,000 molecules for each cell. We next standardized expression

values for each gene across all cells (z-score transformation), as is standard prior to running dimensional reduction tools such as

principal component analysis. These steps are implemented in the NormalizeData and ScaleData functions in Seurat.

Feature selection for individual datasets

In each dataset, we next aimed to identify a subset of features (e.g., genes) exhibiting high variability across cells, and therefore repre-

sent heterogeneous features to prioritize for downstream analysis. Choosing genes solely based on their log-normalized single-cell

variance fails to account for the mean-variance relationship that is inherent to single-cell RNA-seq. Therefore, we first applied a

variance-stabilizing transformation to correct for this [Mayer et al., 2018; Hafemeister and Satija, 2019].

To learn the mean-variance relationship from the data, we computed the mean and variance of each gene using the unnormalized

data (i.e., UMI or countsmatrix), and applied log10-transformation to both.We then fit a curve to predict the variance of each gene as a

function of its mean, by calculating a local fitting of polynomials of degree 2 (R function loess, span = 0.3). This global fit provided us

with a regularized estimator of variance given the mean of a feature. As such, we could use it to standardize feature counts without

removing higher-than-expected variation.

Given the expected variances, we performed the transformation

zij =
xij � xi
si

;

where zij is the standardized value of feature i in cell j, xij is the raw v
alue of feature i in cell j, xi is themean raw value for feature i, and si

is the expected standard deviation of feature i derived from the global mean-variance fit. To reduce the impact of technical outliers,

we clipped the standardized values to a maximum value of
ffiffiffiffi
N

p
, where N is the total number of cells. For each gene, we then

computed the variance of standardized values across all cells. This variance represents ameasure of single-cell dispersion after con-

trolling for mean expression, and we use it directly to rank the features. Unless otherwise noted, we selected the 2,000 genes with the

highest standardized variance as ‘‘highly variable.’’ This procedure is implemented in the FindVariableFeatures function in Seurat v3

(selection.method = ‘‘vst’’).

Feature selection for integrated analysis of multiple datasets
When performing integration across datasets, we aimed to give priority to features that were identified as highly variable in multiple

experiments. Therefore, we first performed feature selection on each dataset individually, using the procedure described above. We
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next prioritized features across multiple experiments by examining the number of datasets in which they were independently iden-

tified as highly variable. From this ranked list of features, we took the top 2,000 to use as input for downstream analyses. We broke

ties by examining the ranks of the tied features in each original dataset and taking thosewith the highestmedian rank. These steps are

implemented in the SelectIntegrationFeatures function in Seurat v3.

Identification of anchor correspondences between two datasets
A key step for all integration analyses in this manuscript is the unsupervised identification of anchors between pairs of datasets.

These anchors represent two cells (with one cell from each dataset), that we predict to originate from a common biological state.

Anchors for reference assembly or transfer learning are calculated using the FindIntegrationAnchors and FindTransferAnchors func-

tions, respectively, in Seurat v3.

We initiate this process through dimension reduction, aiming to place datasets in a shared low-dimensional space. For reference

assembly, we utilize canonical correlation analysis (CCA) as an initial dimension reduction. As we have previously demonstrated

[Butler et al., 2018], the canonical correlation vectors described by CCA effectively capture correlated gene modules that are present

in both datasets, representing genes that define a shared biological state. In contrast, principle component analysis (PCA) will identify

sources of variation even if they are only present in an individual experiment, particularly if there are significant technical effects

across experiments. We therefore utilize CCA when integrating scRNA-seq datasets into a common reference, or when identifying

anchors from single-cell data spanning modalities.

Canonical correlation vectors are calculated as described previously [Butler et al., 2018]. Briefly, let Xf ;c be a single-cell dataset of

features f1; f2;.; fn by cells c1; c2;.; cm and Yf ;d be a single-cell dataset of the same features f1; f2;.; fn by cells d1; d2;.; dp.

Because the total number of cells that are measured in these experiments is generally much larger than the total number of features

shared between the datasets, we opt for a diagonalized CCA implementation that has shown promising performance in related high-

dimensional applications [Witten et al., 2009; Dudoit et al., 2002; Tibshirani et al., 2003]. The goal is to find projection vectors u and v

such that the correlation between the two indices Xu and Yv is maximized.

max
u;v

uTXTYv subject to ku k 2
2%1;kv k 2

2%1

To find the canonical correlation vectors, we first standardize X and Y to have a mean of 0 and variance of 1. We use a standard

singular value decomposition (SVD) to solve for the canonical correlation vectors u and v as follows:

Let

K =XTY

Decompose K via SVD:

K =GLDT

Where

G = ðg1;.;gkÞ
D = ðd1;.; dkÞ
L =

�
l
1=2
1 ;.; l

1=2
k

�
The canonical correlation vectors can then be obtained as the left and right singular values from the SVD for i = 1;.;k.

ui = gi

vi = di

For computational efficiency, we approximate the SVD using the augmented implicitly restarted Lanczos bidiagonalization

algorithm implemented in the irlba R package [Baglama et al., 2018]. This allows us to obtain a user-defined number (k) of singular

vectors that approximate the canonical correlation vectors (CCV). As described above, in this manuscript we set k to represent the

‘‘dimensionality’’ of the dataset.

Canonical correlation vectors (CCV) project the two datasets into a correlated low-dimensional space, but global differences in

scale (for example, differences in normalization between datasets) can still preclude comparing CCV across datasets. To address

this, we perform L2-normalization of the cell embeddings, where N is a vector of cell embeddings across the k CCV.

bN =
N

jN j ; jN j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i = 1

n2
i

vuut
Following dimensional reduction, we identified the K-nearest neighbors (KNNs) for each cell within its paired dataset, based on the

L2-normalized CCV. Finally, we identify mutual nearest neighbors (MNN; pairs of cells, with one from each dataset, that are contained

within each other’s neighborhoods). We refer to these pairwise correspondences as ‘‘anchors,’’ and wish to again highlight the
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foundational work of Haghverdi et al. [Haghverdi et al., 2018] for inspiring this concept. The size of this neighborhood (k.anchor

parameter in FindTransferAnchors and FindIntegrationAnchors) was set to 5 for all analyses in this manuscript.

Anchor scoring
The robust identification of anchor correspondences is key for effective downstream integration. Incorrect anchor pairs representing

cells from distinct biological states can lead to incorrect downstream conclusions. In particular, cells that represent a biological state

unique to one dataset should theoretically not participate in anchor pairs, yet in practice, they will do so with low frequency (Figure 1).

Incorrectly identified anchors are similar to aberrant edges that can arise in KNN graphs (deemed ’short-circuits’; Bendall et al., 2014)

We therefore implement two steps (filtering and scoring anchors) to mitigate the effects of any incorrectly identified anchors.

First, we ensure that the anchorswe identify in low-dimensional space also are supported by the underlying high-dimensional mea-

surements. To do this, we return to the original data and examine the nearest neighbors of each anchor query cell in the reference

dataset. We perform the search using the max.features (200) genes with the strongest association with previously identified CCV,

using the TopDimFeatures function in Seurat, and search in L2-normalized expression space. If the anchor reference cell is found

within the first k.filter (200) neighbors, then we retain this anchor. Otherwise, we remove this anchor from further analyses. We do

not include a mutual neighborhood requirement for this step, as it is primarily intended as a check to ensure that we do not identify

correspondences between reference and query cells with very divergent expression profiles. This procedure is uniformly applied with

default parameters (max.features = 200, k.filter = 200), for all analyses in this manuscript.

Additionally, to further minimize the influence of incorrectly identified anchors, we implemented a method for scoring anchors that is

similar to the use of shared nearest neighbor (SNN) graphs in graph-based clustering algorithms. By examining the consistency of edges

between cells in the same local neighborhood, SNN metrics add an additional level of robustness to edge identification [Levine et al.,

2015]. For each reference anchor cell, we determine its k.score (30) nearest within-dataset neighbors and its k.score nearest neighbors

in the query dataset. This gives us four neighbormatrices that we combine to form an overall neighborhood graph. For each anchor cor-

respondence, we compute the shared neighbor overlap between the anchor and query cells, and assign this value as the anchor score.

To dampen the potential effect of outlier scores, we use the 0.01 and 0.90 quantiles to rescale anchor scores to a range of 0 to 1.

We find that when ground truth data is available for evaluating anchors, anchors representing correct reference and query cell pairs

have significantly higher scores than incorrect anchors (Figure 2I). Therefore, in downstream calculations (see below), anchors with

lower scores are downweighted in favor of anchors with higher scores. The k.score parameter is fixed to 30 for all analyses in this

manuscript. This procedure is implemented in the ScoreAnchors internal Seurat function, which is called by FindIntegrationAnchors

or FindTransferAnchors in Seurat.

Anchor weighting
We construct a weight matrixW that defines the strength of association between each query cell c, and each anchor i. These weights

are based on two components: the distance between the query cell and the anchor, and the previously computed anchor score. In

this way, query cells in distinct biological states (for example alpha cells and gamma cells) will be influenced by distinct sets of an-

chors, enabling context-specific batch correction. Additionally, robust anchors (with high scores) will gain influence across the query

dataset, while inconsistent anchors will be downweighted. For each cell c in the query dataset, we identify the nearest k:weight

anchors cells in the query dataset in PCA space. Nearest anchors are then weighted based on their distance to the cell c over the

distance to the k:weight-th anchor cell and multiplied by the anchor score ðSiÞ. For each cell c and anchor i, we first compute the

weighted distances as:

Dc;i =

 
1� distðc; aiÞ

dist
�
c; ak:weight

�!Sai

We then apply a Gaussian kernel:

~Dc;i = 1� e

�Dc;i

ð2=sdÞ2

where sd is the Gaussian kernel bandwidth, set to 1 by default. Finally, we normalize across all k:weight anchors:

Wc;i =
~Dc;iPj = k:weight

1
~Dc;j

For identifying anchors for integration, we set k.weight = 100. For identifying transfer anchors, we set k.weight = 50. We reasoned

that the batch vector information may be similar for closely related cell types, and so opt to take into account batch information for

more anchors in integration analyses. In contrast, label information for different but closely related cell types would not improve the

accuracy of cell type predictions, and so we consider a smaller number of anchors surrounding each cell. This procedure is imple-

mented in the FindWeights internal Seurat function, which is called by IntegrateData or TransferData.
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Data integration for reference assembly
Once we have identified anchors and constructed the weights matrix, we follow the strategy outlined previously [Haghverdi et al.,

2018] for batch correction. We first calculate the matrix B, where each column represents the difference between the two expression

vectors for every pair of anchor cells, a:

B = Y ½; a� � X½; a�
We then calculate a transformation matrix, C, using the previously computed weights matrix and the integration matrix as:

C=BWT

We then subtract the transformation matrix, C, from the original expression matrix, Y, to produce the integrated expression ma-

trix bY : bY = Y � C

This step is implemented in the IntegrateData function in Seurat. The corrected expression matrix can be treated as a single

normalized scRNA-seq matrix, and can be processed downstream using any single-cell analytical toolkit. Notably, in Seurat, we

continue to store the original uncorrected expression data, to facilitate downstream comparisons across datasets.

Multiple Dataset Integration
Our approach to multiple dataset integration draws inspiration from methods for multiple sequence alignment. Many multiple

sequence alignment algorithms begin with the construction of all pairwise alignments and proceed to merge these pairwise align-

ments to progressively form the final multiple sequence alignment [Feng and Doolittle, 1987]. Here, we use a similar approach where

we first identify and score anchors between all pairs of datasets and then progressively build the final integrated dataset.

To integrate multiple datasets, we first determine the order in which to merge the datasets after pairwise anchor identification. To

do this we first define a distance between any two datasets as the total number of cells in the smaller dataset divided by the total

number of anchors between the two datasets. We compute all pairwise distances between datasets and then perform hierarchical

clustering on this distance matrix using the hclust function from the stats R package. This returns a guide tree which we use to iter-

atively merge the datasets using the integration procedure described above to form the final integrated dataset. This procedure is

implemented in the IntegrateData function in Seurat.

Label Transfer
For cell metadata transfer, we create a binary classification matrix L containing the classification information for each anchor cell in the

reference dataset. Specifically, each row inL corresponds to a possible class and each columncorresponds to a reference anchor. If the

referencecell in theanchorbelongs to thecorrespondingclass, thatentry in thematrix isfilledwitha1,otherwise theentry isassigneda0.

We then compute label predictions, Pl, by multiplying the anchor classification matrix L with the transpose of the weights matrixW:

Pl = LWT

This returns a prediction score for each class for every cell in the query dataset that ranges from 0 to 1, and sums to 1.

Feature Imputation
Our procedure for transferring continuous data is closely related to discrete label transfer. We compute new feature expression pre-

dictions, Pf , by multiplying a matrix of anchor features to be transferred, F, with the transpose of the weights matrix W:

Pf = FWT

This returns a predicted expression matrix for each feature (row) in F for each cell in the query dataset. Feature imputation and label

transfer are both implemented in the TransferData function in Seurat.

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing of single-cell datasets
Data Acquisition and QC

The data used for the majority of the analyses in this paper come from publicly available repositories and data portals, and we are

grateful to all the groups and organizations for making their data readily accessible. We obtained the human pancreatic islet datasets

from the following accession numbers: GEO: GSE81076 (CelSeq), GEO: GSE85241 (CelSeq2), GEO: GSE86469 (Fluidigm C1),

E-MTAB-5061 (SMART-seq2), and GEO: GSE84133 (inDrops). We filtered out cells for which fewer than 1,750 unique genes/cell

(Celseq) or 2,500 genes/cell (CelSeq2/FluidigmC1/SMART-seq2) were detected. For the inDrops datasets, we kept all cells with pre-

viously annotated cluster information. We obtained the UMI count matrix for the mouse retinal bipolar cell dataset under the acces-

sion number GSE81904, keeping only those cells with previously annotated cluster information. The Tabula Muris datasets were
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obtained from FigShare for the Version 1 release [The Tabula Muris Consortium, 2017, 2018a]. The human bone marrow dataset was

obtained from the Human Cell Atlas Data Portal preview site [Li et al., 2018]. We filtered out any cells for which fewer than 500 genes

were detected and any genes that were expressed in fewer than 100 cells. The osmFISH data was obtained from the Linnarsson Lab

website [Linnarsson, 2018]. Themouse visual cortex SMART-seq2 data was obtained from the Allen Brain Data Portal [Allen Institute,

2018; Tasic et al., 2018]. Any cells that were annotated as either ‘‘Low Quality’’ or ‘‘No Class’’ were removed. The mouse prefrontal

cortex scATAC-seq gene activity scores and ATAC peak matrices were obtained from the Seattle Organismal Molecular Atlases

(SOMA) Data Portal (http://atlas.gs.washington.edu/mouse-atac/data/; Cusanovich et al., 2018 Cell). The STARmap 1,020-gene da-

tasets from the mouse visual cortex were downloaded from the original paper’s companion website [Wang et al., 2018a, 2018b]. We

kept all cortical cells, based on the provided class labels, and did not perform additional filtration based on total RNA counts

observed per cell.

Bone marrow mononuclear cells CITE-seq experiment
Bone marrow mononuclear cells from a single human donor were purchased from AllCells (cat #: ABM007F, lot #:3008803). The day

of the experiment, cells were thawed according tomanufacturer’s protocol. Briefly, cell vials were sprayedwith ethanol and placed in

a 37�C water bath for 2 min to thaw. RPMI 10% media was used to wash and resuspend cells. Cell numbers and viability were esti-

mated using trypan blue. Cells were resuspended in CITE-seq [Stoeckius et al., 2017] staining buffer (2%BSA/0.01%Tween in PBS)

and incubated with FcX blocking reagent for 10 min (BioLegend, cat #: 422302) to block nonspecific antibody binding. Following FcX

blocking, cells were incubated with a pool of 25 antibodies (1 mg/antibody) for 30 min at 4�C. To ensure we could accurately identify

cell doublets and distinguish empty droplets from cells with low gene counts, cells were split into 10 tubes each containing a unique

hashing antibody from BioLegend [Stoeckius et al., 2018] and were incubated at 4�C for an additional 20 min. After incubation, cells

were washed three times with 1 mL of staining buffer to remove any unbound antibodies. At the end of the final wash, cells were

passed through a 40 mm filter to remove cell clumps (VWR, cat #: 10032-802) and resuspended in 1xPBS at the appropriate cell con-

centration for 10x Genomics 30 scRNA-seq [Zheng et al., 2017].

Antibody List

The following human Totalseq BioLegend antibodies were included in the pool: CD3 (cat #: 300475), CD56 (cat #: 362557), CD19

(cat #: 302259), CD11c (cat #: 371519), CD38(cat #: 102733), CD45RA, (cat #: 304157) CD123(cat #: 306037), CD127

(cat #: 351352), CD4 (cat #: 300563), CD8a (cat #: 301067), CD14(cat #: 301855), CD16(cat #: 302061), CD25 (cat #: 302643),

CD45RO (cat #: 304255), CD69 (cat #: 310947), CD197 (cat #: 353247), CD161 (cat #: 339945), CD28 (custom made, clone:

CD28.2), CD27 (cat #: 302847), HLA-DR (cat #: 307659), CD57 (custom made, clone: QA17A04), CD79b (cat #: 341415), CD11a

(cat #: 350615), CD34 (cat #: 343537). For cellular hashing the following TotalSeq hashtag antibodies were purchased from

BioLegend: Hashtag 1 (cat #: 394601), Hashtag 2 (cat #: 394603), Hashtag3 (cat #: 394605), Hashtag 4 (cat #: 394607), Hashtag 5

(cat #: 394609), Hashtag 6 (cat #: 394611), Hashtag 7 (cat #: 394613), Hashtag 8 (cat #: 394615), Hashtag 9 (cat #: 394617), Hashtag

10 (cat #: 394619). For the complete list of antibody barcode sequences see Tables S1E and S1F.

CITE-seq data preprocessing

CITE-seq RNA reads were mapped to the human genome (GRCh38) and transcripts quantified using CellRanger v2.1.0 [Zheng et al.,

2017; Dobin et al., 2013]. Antibody counts for CITE-seq [Stoeckius et al., 2017] and cell hashing [Stoeckius et al., 2018] were counted

using CITE-seq-count (https://github.com/Hoohm/CITE-seq-Count). Antibody-derived tags (ADTs) and hashtag oligos (HTOs) for

each cell were normalized using a centered log ratio (CLR) transformation across cells, implemented in the function NormalizeData

with normalization.method = ‘‘CLR,’’ margin = 2 in Seurat v3. Cells were demultiplexed using the HTODemux function in Seurat, and

cell doublets and background empty droplets subsequently removed. RNA counts for each cell were then preprocessed as

described above (Data preprocessing).

CITE-seq cross-validation

We separated the 33,454-cell CITE-seq dataset into two equal groups at random to produce a query and reference dataset for cross-

validation of protein expression transfer accuracy between experiments. Within the query dataset, we removed and stored the

measured protein expression data for each cell. We then ran our transfer workflow on the query and reference dataset with default

parameters, transferring the protein expression values from the reference dataset onto the query. We then computed, for each pro-

tein in each query cell, the Pearson correlation between the predicted protein expression and the measured expression level.

To assess the relationship between the number of RNA features (genes) used to identify anchors between the datasets and the

resulting accuracy, we first ranked each gene in the CITE-seq dataset by its contribution to the overall variance in the dataset by

multiplying the gene’s PCA loading with the variance explained by the component. We then took increasing subsets for these genes

starting with the highest-ranked genes, ranging from 10 to 1,000 genes in steps of 10, and repeated the cross-validation.

Protein expression transfer to the HCA

To transfer cell surface protein expression data to the Human Cell Atlas dataset, we first computationally removed doublets from

each scRNA-seq batch using Scrublet [Wolock et al., 2019], then integrated the eight human bone marrow datasets (eight different

donors) using the Seurat v3 integration method (FindIntegrationAnchors and IntegrateData functions in Seurat v3) with default pa-

rameters, a dimensionality of 50, and an eps = 1 as described above. We then transferred protein expression from the 33,454-cell

CITE-seq dataset to the 274,932-cell HCA dataset using the FindTransferAnchors and TransferData functions in Seurat v3.
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Analysis of CD69+ bone marrow population

We identified a population of predicted CD69+/CD8+ cells in the HCA bone marrow dataset. To identify a gene expression signature

associated with this group of cells, we first performed an initial clustering of the data using Louvain clustering based on a shared

nearest neighbor graph, as implemented in the FindClusters function in Seurat with default parameters. We then isolated the cluster

that contained a mixture of CD69+ and CD69- CD8+ cells. We further subdivided this cluster into CD69-high and CD69-low cells by

fitting a three-component mixture model using the predicted CD69 expression data, using the normalmixEM function in the mixtools

R package [Benaglia et al., 2009]. After grouping the cells into high- and low-expressing CD69 populations, we searched for differ-

entially expressed genes between the two populations using the original (uncorrected) HCA scRNA-seq data. We used the logistic

regression differential expression test [Ntranos et al., 2019] implemented in the FindMarkers function in Seurat, with the donor as a

latent variable (latent.vars = ‘‘orig.ident,’’ test.use = ‘‘LR’’). We retained the top 25 differentially expressed genes based on highest

fold-change expression. We performed gene ontology enrichment analysis on this set of genes for both molecular function and bio-

logical process, using the R package GOstats with a p-value cutoff of 0.001 [Falcon and Gentleman, 2007].

Validation of CD69+ T cell population

To validate the CD69+/CD8+ T cell population identified through our integration method, we performed bulk RNA-seq experiments

on FACS-sorted cell populations from the same bone marrow cell sample. Bone marrow mononuclear cells were thawed as

described above. Cells were resuspended in MACS buffer (2%BSA/2mM EDTA in PBS) and incubated with FcX blocking reagent

for 10 min (BioLegend, cat #: 422302) to block nonspecific antibody binding. Cells were stained with the following FACS antibodies:

FITC-CD3 (clone HIT3a, 300306), APC-CD4 (clone RPA-T4, cat #: 300514), APCCy7-CD8 (clone RPA-T8, cat #: 301015) and PE-

CD69 (clone FN50, cat #: 310905). DAPI was used to exclude dead cells (Thermo Fisher Scientific, cat #: D1306). CD4-/CD8+/

CD3+/CD69+ and CD4-/CD8+/CD3+/CD69- cells were sorted into tubes (4 replicates per population, 300-3000 cells per replicate)

containing RLT lysis buffer (Qiagen, cat #: 79216) using the SONY SH800 sorter. To remove cellular debris, AMPure bead cleanup

was performed on all sample lysates. Reverse transcription, cDNA amplification and RNA-seq libraries were prepared as described

previously (Satija Lab, 2018). To identify differentially-expressed genes between the CD69+ and CD69- sorted populations, we used

DESeq2 [Love et al., 2014] and filtered for significant genes with a log2-fold change in expression greater than 1.5 and a q-value of

less than 0.01 [Storey and Tibshirani, 2003].

Calculation of Moran’s I

To calculate Moran’s I statistic, a measure of spatial autocorrelation, we compute:

I=
N

W

SiSjwijðxi � xÞðxj � xÞ
Siðxi � xÞ2

WhereN is the number of spatial units (i and j for 2-dimensional space), x is the gene of interest, x is the mean expression of gene x,

wij is a spatial weight matrix with zeros on the diagonal, andW is the sum of all wij. We computed the spatial weight matrix using the

function dist in the R package stats, and applied a Gaussian kernel to the distance matrix to produce a smooth distribution. We used

the implementation of Moran’s I available in the R package ape [Paradis et al., 2004], and acknowledge the Trapnell Lab Monocle 3

tutorials for suggesting the use of Moran’s I to estimate spatial autocorrelation in single-cell data. We applied Moran’s I in two ana-

lyses: examining spatial (2D) patterns of gene expression in themouse brain, and examining the dependence of gene expression on a

1D axis defined by CD69 expression in human bone marrow cells. In each case, we binned gene expression values for cells in small

spatial regions before calculating spatial weights and Moran’s I.

Assignment of cell type labels for pancreatic islet cells
To assign a set of consistent cell type labels to the pancreatic islet cell datasets, we based our classifications on the labels provided in

the inDrops dataset. We first computed a PCA on the scaled integrated data matrix and used the first 30 PCs to build an SNN graph

using the FindNeighbors function in Seurat with k.param set to 20. We then clustered the data using FindClusters in Seurat with the

resolution parameter set to 1.5. For each resulting cluster, we assigned a label based on themost frequently occurring cell type in that

cluster from the inDrops dataset (Table S1B).

Identification of rare subtypes in the Tabula Muris dataset
We integrated the two Tabula Muris datasets using the Seurat v3 integration method (FindAnchors and IntegrateData) with a chosen

dimensionality of 100. We then normalized, scaled, and performed PCA on the integrated data as described in the Data preprocess-

ing section above. The first 100 PCs were then used to construct an SNN matrix using the FindNeighbors function in Seurat v3 with

k.param set to 20. We then identified clusters using the FindClusters command with the resolution parameter set to 4, identifying 132

total clusters. We annotated cluster 121 asmesothelial cells and cluster 114 as plasmacytoid dendritic cells based on the expression

of known cell type markers (Figures S2C, S2E, and S2F).

Integration with simulated cell type holdouts
For both the pancreas and bipolar datasets, we performed a simulated holdout experiment where one cell type was completely

removed from each dataset being integrated. These combinations are detailed in Table S1A. After the cell type removal, highly
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variable genes were recalculated and integration features were selected. These features were then used as input to the integration

procedure with the same default parameter settings as used in the full dataset integration.

We also tested the following existing integration methods on the same holdout datasets: Seurat v2 [Butler et al., 2018], mnnCorrect

[Haghverdi et al., 2018], and scanorama [Hie et al., 2019]. For Seurat v2, we used the same feature set as determined for Seurat v3 to

run a multi-CCA analysis followed by alignment (RunMultiCCA and AlignSubspace in Seurat v2). We used the first 30 aligned CCs to

define the integrated subspace for clustering, visualization, and computing the integration metrics.

For mnnCorrect, we used the mnnCorrect function from the scran [Lun et al., 2016] R package with the log-normalized data

matrices as input, subset to include the same variable integration features we used for Seurat v3, and setting the pc.approx param-

eter to TRUE. This returned a corrected gene expression matrix on which we performed principle component analysis and kept the

first 30 PCs as input for clustering, visualization, and computing the integration metrics.

For scanorama, we used the ‘‘correct’’ function with default parameter settings to batch correct the data and return an integrated

expression matrix. The downstream processing here was kept the same as for mnnCorrect.

Integration Metrics
To compare the results of the holdout integration experiments, we computed three measures of integration quality: the silhouette

coefficient [Rousseeuw, 1987], a mixing metric, and a local structure metric.

Silhouette coefficient

We computed the silhouette coefficient using the cluster package in R. Here, distances were computed in PCA space defined by the

first 30 components for all methods except for Seurat v2, where we used the first 30 aligned CCs to define cluster distances. Clusters

were defined using the previously assigned cell-type labels (Assignment of cell type labels for pancreatic islet cells). The silhouette

coefficient gives a score for each cell that assesses the separation of cell types, with a high score suggesting that cells of the same

cell type are close together and far from other cells of a different type. The silhouette score sðiÞ is defined for each cell i as follows. Let

aðiÞ be the average distance of cell i to all other cells within i’s cluster and bðiÞ be the average distance of i to all cells in the nearest

cluster to which i does not belong. sðiÞ can then be computed as:

sðiÞ=

8>>>>>><>>>>>>:

1� aðiÞ
bðiÞ if aðiÞ<bðiÞ

0 if aðiÞ = bðiÞ
bðiÞ
aðiÞ � 1 if aðiÞ>bðiÞ

Mixing metric

We designed a ‘‘mixing metric’’ to evaluate how well mixed the input datasets were after integration. We first considered using a

metric based on dataset entropy within an individual cell’s local neighborhood [Büttner et al., 2017]. However, the assumptions of

these methods are violated in cases where the distribution of cell type frequencies differs significantly across datasets, as is the

case in many of our experiments. As an alternative, we reasoned that if the local neighborhood for a cell is well mixed, its closest

neighbors should contain at least a small number (k = 5) of cells from each dataset. If the cell is poorly mixed, then its closest neigh-

bors will likely stem only from a small subset of datasets (perhaps only its own). For each cell, we therefore examine the (k.max = 300)

ranked nearest neighbors across all datasets. We also compute the k = 5 closest neighbors for each dataset individually. We then ask

which rank in the overall neighborhood list corresponds to the 5th neighbor in each dataset (with a max of 300), and took a median

over all these values. This corresponds to a mixing metric per cell, and we averaged across all cells to obtain an overall mixing metric

for eachmethod.We found that this metric accurately reflected the themixing of shared biological states across datasets, evenwhen

cluster frequencies differed. This metric is implemented in the MixingMetric function in Seurat v3.

Local structure metric

We computed ametric designed to determine howwell the original structure of each dataset was preserved after integration. Here, we

split thedataback into itsoriginaldatasets, re-computeanprincipal componentanalysison theuncorrecteddata, and identify thek=100

closest nearest neighbors.Wealsocomputed the100nearestneighborsbasedonaprincipal component analysisof the integrateddata-

set. For every cell, we then looked at the intersection of these two neighborhoods and computed the fraction of overlap. For an overall

score, we took the mean overlap fraction for all cells. This metric is implemented in the LocalStruct function in Seurat v3.

Transferring cell type labels onto scRNA-seq data
In order to benchmark the projection of new data onto an existing reference, we performed the following experiments with the

pancreas and bipolar datasets:

1. We generated 166 evaluation datasets for benchmark comparison. For each case, we removed one dataset from the reference

to use as a query.We also removed all instances of one celltype from the reference (’withheld class’). We did this for all possible

combinations of holdout datasets and cell types.
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2. To ensure that a single cell type did not dominate in downstream evaluation, we downsampled the query dataset to contain a

maximum of 100 cells per celltype. We then added or subtracted additional instances of cells in the ‘‘withheld’’ class, so that it

composed 20% of the query.

3. We then integrated the reference using the same default workflow and parameter settings as for all previous integrations.

To classify cells using the Seurat v3 workflow, we first integrated the reference dataset using default parameters. We then clas-

sified query cells using the FindTransferAnchors and TransferData functions in Seurat with default parameters. We examined projec-

tion scores and assigned the cells with the lowest 20% of values to be ‘‘Unassigned.’’

We also repeated the classification using two functions from the scMap R package: scmapCluster and scmapCell [Kiselev et al.,

2018]. For these tests, we selected features using the selectFeatures function in scMap with n_features specified as 500. For

scmapCluster, we set the similarity threshold parameter to -Inf to force assignments where possible. We then took the cells with

the lowest 20% of similarity values and called them ‘‘Unassigned.’’

scATAC-seq analysis
Preprocessing scATAC-seq data

We obtained scATAC-seq gene activity score and binarized peak count matrices for the mouse prefrontal cortex [Cusanovich et al.,

2018]. For all integration with scRNA-seq data, we used the gene activity score matrix. For finding differentially accessible peaks be-

tween groups of cells, we used the binarized peak count matrix. The authors instruct that scATAC-seq gene activity score matrix

must be preprocessed and filtered, so we applied log-CPM (counts-per-million) normalization, and removed cells with less than

5,000 total peaks detected in the binary peak matrix.

Latent semantic indexing

We reduced the dimensionality of the scATAC-seq data by performing latent semantic indexing (LSI) on the scATAC-seq peakmatrix,

as suggested by Cusanovich and Hill et al. [Cusanovich et al., 2018]. We first computed the term frequency-inverse document fre-

quency (TF-IDF) of the peakmatrix by dividing the accessibility of each peak in each cell by the total accessibility in the cell (the ‘‘term

frequency’’), andmultiplied this by the inverse accessibility of the peak in the cell population. This step ’upweights’ the contribution of

highly variable peaks and downweights peaks that are accessible in all cells. We then computed to log of this TF-IDFmatrix, adding a

pseudocount of 1 to avoid computing the log of 0. We decomposed the TF-IDF matrix via SVD to return LSI components, and scaled

LSI loadings for each cell to mean 0 and standard deviation 1. These steps are used for learning the weighting of anchors within the

scATAC-seq dataset, and are implemented in the RunLSI function in Seurat.

Transferring cell type labels onto scATAC-seq cells

We found anchors between the pre-processed scATAC-seq cells (gene activity matrix) for the mouse prefrontal cortex and scRNA-

seq cells from the mouse visual cortex [Tasic et al., 2016, 2018]. We first found highly variable features in the scRNA-seq data using

the FindVariableFeatures function in Seurat v3, as described above (Data preprocessing). We used the top 5,000 variable features

that were also present in the scATAC-seq data as input to the integration, resulting in �3,000 variable features as recommended by

the original authors for downstream analysis [Cusanovich et al., 2018]. We found anchors between the two datasets using the

FindTransferAnchors function in Seurat v3, with the parameters dims = 1:20 and reduction = ‘‘cca.’’ We transferred cell type labels

from the scRNA-seq dataset to the scATAC-seq cells using the TransferData function in Seurat v3, setting the parameter

weight.reduction = atac[[‘‘lsi’’]] to specify the previously computed LSI dimensional reduction when calculating anchor weights.

To visualize the two datasets together, we transferred scRNA-seq data onto the scATAC-seq cells, using the same anchors as

previously identified. We accomplished this by applying the same procedure used to impute transcriptome-wide expression in

the STARmap dataset (see below). After imputation, we concatenated this matrix with the scRNA-seq dataset, performed a single

PCA on both datasets, projected to two dimensions with UMAP, and colored the cells by their classification label. We emphasize

that step is intended only for visual interpretation, and it is not necessary for us to jointly visualize the datasets, or transfer

scRNA-seq data, in order to classify the scATAC-seq cells.

Identification of differentially accessible peaks and overrepresented motifs

We identified differentially accessible peaks between groups of scATAC-seq cells simply by ordering peaks by their fold-change

accessibility between the groups, and retaining the top 1,000 peaks that displayed the greatest fold-change in accessibility. We

searched for overrepresented DNA sequence motifs in accessible regions using the Homer package [Heinz et al., 2010], using

the findMotifsGenome.pl program with default parameters, and the mm9 genome.

Psuedo-bulk ATAC-seq data collation

We split the scATAC-seq binary sequence/alignment map (BAM) file for the prefrontal cortex into individual files for each predicted

cell type to create pseudo-bulk ATAC seq datasets for each celltype. To extract scATAC-seq reads by their cell barcode, we used the

filterbarcodes command in the Python package sinto (v0.1, https://github.com/timoast/sinto), which depends heavily on the pysam

package [Li et al., 2009]. We created normalized read coverage tracks (bigwig format) for each BAM file using the program

bamCoverage in the deepTools package [Ramı́rez et al., 2016] with the binSize parameter set to 1 and using the reads per kilobase

per million mapped reads (RPKM) normalization option.
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Pre-processing of 10X scRNA-seq and scATAC-seq data

We downloaded a human peripheral blood mononuclear cell (PBMC) scRNA-seq dataset generated with the 10x Genomics Chro-

mium system (v3 chemistry, 10k dataset; https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/

pbmc_10k_v3), and a human PBMC scATAC-seq dataset, also generated with the 10x Genomics Chromium system (v1 chemistry;

10k dataset; https://support.10xgenomics.com/single-cell-atac/datasets/1.0.1/atac_v1_pbmc_10k).

We pre-processed the scRNA-seq dataset, retaining cells with over 2,000 and under 20,000 genes detected, with fewer than 20%

mitochondrial transcripts. We identified and removed doublets using Scrublet [Wolock et al., 2019], removing cells with a doublet

score greater than 0.1.We clustered the scRNA-seq cells by first identifying the top 3,000 highly variable genes, scaling and centering

the expression of these genes, computing PCA on the scaled expression values, and performing graph-based cluster detection using

the top 30 principal components with the Louvain algorithm for community detection. We annotated clusters as cell types according

to the expression of canonical marker genes.

We pre-processed the scATAC-seq data, retaining cells with over 5,000 peaks, and peaks detected in at least 100 cells. As

proposed by [Cusanovich et al., 2018], we performed latent semantic indexing on the scATAC-seq dataset to reduce

dimensionality. To link the scATAC-seq accessibility peaks to genes, we simply summed peaks intersecting the gene body

and 2 kilobase upstream region to give a gene activity score for each gene in each cell. This procedure is implemented in

the CreateGeneActivityMatrix in Seurat v3, though our procedure can also run on Cicero-derived gene activity matrices [Pliner

et al., 2018].

Classification of scATAC-seq profiles based on scRNA-seq clusters

We transferred cell type annotations from the scRNA-seq dataset to the scATAC-seq dataset using the same procedure as described

above for the integration of scRNA-seq and scATAC-seq data from the mouse cortex, and using a dimensionality of 30. To visualize

cells from each dataset in the same space, we also transferred gene expression data from the scRNA-seq cells to the scATAC-seq

cells using the same set of anchors as was used to transfer cell type annotations, then performed PCA and UMAP on the combined

RNA and ATAC object. We note that this is only necessary for the purposes of visualization.

Experimental validation using ATAC-seq from FACS-sorted populations

We downloaded bulk ATAC-seq peak accessibility data for all available cell types (NK cells, CD8+ T cells, CD4+ T cells, Mono-

cytes) from the UCSC Genome Browser (https://s3-us-west-1.amazonaws.com/chang-public-data/2016_NatGen_ATAC-AML/

hub.txt) and GEO (GSE74912 [Corces et al., 2016]). Monocyte tracks were available from the UCSC genome browser, but

peak-level quantifications were not available on GEO. To create pseudo-bulk ATAC-seq datasets for each PBMC cell type, we

computationally grouped reads from the 10x Genomics data according to their predicted cell type as described above for the

mouse brain data. We compared accessibility patterns between the FACS-sorted bulk ATAC-seq and computationally-sorted

scATAC-seq cells through visualization of coverage at canonical marker loci using the Gviz R package [Hahne and Ivanek,

2016]. To compare global patterns of chromatin accessibility, we identified variable peaks among the bulk ATAC-seq samples

and computed the peak coverage of each pseudo-bulk scATAC-seq population using bedtools multicov [Quinlan and Hall,

2010]. We then computed the Pearson correlation between peak accessibility in each bulk ATAC-seq population and the different

pseudo-bulk scATAC-seq populations.

Projecting gene expression and cell type labels onto spatially-resolved cells
Preprocessing STARmap data

We obtained STARmap gene count matrices and cell position information for two combinatorially-encoded 1,020-gene experiments

from the STARmap companion website (https://www.starmapresources.com/data/ [Wang et al., 2018b]), and preprocessed

the gene expression matrices as described above (Data preprocessing), with a normalization scaling factor equal to the median

RNA counts per cell. To visualize spatial patterns of gene expression, we identified cell locations and morphologies using Python

code provided by the original authors (https://github.com/weallen/STARmap). Before transferring transcriptome-wide gene

expression data from the SMART-seq2 dataset [Tasic et al., 2016, 2018] to the STARmap cells, we first integrated the two STARmap

replicates using the Seurat v3 integration method. First, we identified anchors between the STARmap datasets using the

FindIntegrationAnchors function in Seurat v3, using all 1,020 genes as input to the CCA. We then integrated the datasets using

the IntegrateData function.

Data transfer

We then transferred transcriptome-wide gene expression data from the SMART-seq2 dataset to the integrated STARmap datasets

using the FindTransferAnchors (reduction = ‘‘cca’’) and TransferData functions in Seurat v3. We ran TransferData twice, once to

transfer transcriptome-wide gene expression measurements, and again to transfer cell type labels from the SMART-seq2 dataset,

using the same set of anchors. For all genes shown in Figure 5B (Cux2, Lamp5,Rorb,Rab3c, Syt6, Sox2ot, Bsg and Sst), imputations

represent leave-one-out cross-validation of the STARmap data transfer. Specifically, we performed feature transfer independently

for each gene, each time removing the gene of interest from the set of genes used to identify anchor cells between the STARmap

and SMART-seq2 datasets.

Analysis of integrated STARmap data

After predicting cell type labels in the STARmap cells by transferring labels from the SMART-seq2 dataset, we observed 1,915 cells

with high-confidence cell type predictions (prediction score > 0.5). To be more conservative, we chose to filter the predicted celltype
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labels to retain only the highest 50% scoring cells for each transferred cell type, retaining a total of 1,210 classified cells. We then

performed differential expression testing to identify genes that were upregulated in each classified cell type. We used a logistic

regression test for differential expression [Ntranos et al., 2019] on the uncorrected data with replicate as a latent variable, imple-

mented in the FindMarkers function in Seurat (method = ‘‘LR,’’ latent.vars = ‘‘orig.ident,’’ assay = ‘‘RNA’’).

To assess the robustness of our data transfer method, we first re-computed variable genes in each STARmap dataset, using the

predicted gene expression data. Here, we selected the top 3,000 highly variable genes based on mean-variance dispersion. We did

not use the variance-stabilizing transformation described above (Data preprocessing), as the predicted expression data are not

discrete counts. For each gene identified as highly variable in either STARmap replicate, we calculated Moran’s I (see Calculation

of Moran’s I, above), to estimate the relationship between predicted gene expression and spatial distribution for each gene. We

then compared the Moran’s I value for each gene in the two replicates by calculating the Pearson correlation between Moran’s I

values.

STARmap imputation with Drop-seq data

To investigate whether we could achieve accurate imputation results with a dataset generated using a droplet-based scRNA-seq

technology, we repeated our STARmap imputation analysis using a recent Drop-seq scRNA-seq dataset from the mouse brain

[Saunders et al., 2018]. We downloaded Drop-seq data for the mouse prefrontal cortex from the Drop-viz website (https://

storage.googleapis.com/dropviz-downloads/static/regions/F_GRCm38.81.P60Cortex_noRep5_FRONTALonly.raw.dge.txt.gz).

We pre-processed the Drop-seq data using Seurat as described above, choosing a dimensionality of 50. We repeated the STARmap

imputation analysis exactly as described above for the SMART-seq2 dataset, using the Drop-seq data [Saunders et al., 2018].

STARmap feature downsampling and calculation of gene expression redundancy

To assess the number of features required for accurate gene expression prediction in the STARmap dataset, we first randomly chose

subsets of STARmap genes ranging from 50-1,000 genes retained, and repeated the transcriptional imputations described above

with each downsampling set. We evaluated the performance of each downsampling by computing the Pearson correlation in

gene expression between the downsampled prediction values and prediction values obtained using the entire STARmap dataset.

For each gene, we calculated its correlation in the scRNA-seq data with each of the features in the measured feature set, and

took the third highest value as an estimate of ‘‘expression redundancy.’’ To repeat our gene downsampling analysis in a way that

would minimize redundancy among genes in the measured set, we chose an equal number of markers from Figure 5G per cluster,

ranked by highest average log-fold change. Once we had exhausted cluster markers, we picked remaining genes based on their sta-

bilized variance values, computed with FindVariableFeatures in Seurat.

DATA AND SOFTWARE AVAILABILITY

Our integration methods are implemented in Seurat v3, available on CRAN (https://CRAN.R-project.org/package=Seurat) and

GitHub (https://github.com/satijalab/seurat). Raw CITE-seq and bulk RNA-seq reads are available through SRA (SRA:

SRP188993), and processed expression matrices through GEO (GEO: GSE128639).

ADDITIONAL RESOURCES

Documentation, tutorials, and vignettes for Seurat v3 can be found on the Satija lab website (https://satijalab.org/seurat/).
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Figure S1. Integration of Human Pancreatic Islet and Mouse Retinal Bipolar Cells, Related to Figure 2

(A-C) UMAP plots of 14,890 human pancreatic islet cells across 8 datasets before (A) and after (B) integration. After integration, cells were clustered and labeled

based on a previously annotated reference dataset (C), allowing for detection of both common and rare subpopulations of islet cells across integrated datasets.

(D) For verification of the cell type labels, we plot the top differentially expressed gene markers for each cluster, broken down by original dataset and observe

consistent patterns of cell-type specific expression. To facilitate the visualization of rare populations, we downsample the heatmap to show at most 25 cells per

cluster per dataset.(E, F) tSNE plots of 23,725 mouse retinal bipolar cells after integration with Seurat v3, Seurat v2, mnnCorrect, and Scanorama. For each of

these analyses, a single cell type was removed from each of the 6 replicates prior to integration (Table S1A).



Figure S2. Integration of Tabula Muris Mouse Cell Atlas Datasets, Related to Figure 2

(A-C) tSNE plots of the integrated mouse cell atlas datasets grouped by (A) technology, (B) tissue, and (C) whether the tissue was profiled by SMART-Seq (FACS)

only. After integration, cells from tissues profiled by both 10x and FACS-sorted SMART-seq cluster together, where as cells from tissues uniquely profiled by

FACS are not blended into other tissue types, demonstrating robustness to non-overlapping populations. (D) Further underscoring robustness, cells from tissues

profiled across technologies achieve high mixing whereas cells profiled using only one technology have substantially lower scores. The internal dataset structure

for both subsets is preserved in integrated analysis. (E-F) By integrating the datasets we can detect exceedingly rare cell populations that are present in multiple

tissues, such as (E) mesothelial cells and (F) plasmacytoid dendritic cells. We can also identify both shared and divergent gene expression markers for these

populations across tissues. (G) Integration of 274,932 human bone marrow cells generated by the Human Cell Atlas project, from eight different human donors.

(H) Enriched gene ontology terms for gene biological processes and molecular functions for CD69+ marker genes identified from HCA bone marrow scRNA-seq

data. Gene ontology analysis was performed using GOstats.
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Figure S3. Examination of Non-overlapping scATAC-Seq Cells in Multi-modal Co-embedding, Related to Figure 3

(A) UMAP visualization of scRNA-seq and scATAC-seq cells following multi-modal integration. Cells are colored by dataset of origin (left), and the unknown group

of scATAC-seq cells that failed to mix with the scRNA-seq cells are highlighted in red (right). (B) Expression of cell-type-specific marker genes in the unknown

population and in other groups of cells, as annotated by the original authors (Cusanovich et al. (2018)). The unknown population of scATAC-seq cells co-express

gene activity markers that are otherwise mutually exclusive, suggesting that they may represent scATAC-seq multiplets. (C) UMAP embedding of human PBMCs

profiled using 10x Genomics scRNA-seq, with cells colored by their annotated cell type. (D) Joint visualization of scRNA-seq and scATAC-seq PBMCs, with cells

colored by their predicted cell type. (E) As for (D), with cells colored by their dataset of origin. (F) Chromatin accessibility profiles for computationally-sorted human

PBMC subsets. X-axis scale is indicated by scale bars above each genomic region. Y-axis limits were set individually for each locus to enhance visualization.

However, within each locus all pseudo-bulk tracks are on a consistent scale, and all FACS-sorted bulk tracks are on a consistent scale, to enable a visual

comparison. (G) Genome-wide agreement between experimentally and computationally-sorted immune cell chromatin accessibility profiles. Pearson correlation

between peak accessibility (normalized coverage within peak) between cell types sorted experimentally (by FACS; Corces et al., 2016) and computationally.

Corresponding cell types in the single-cell and bulk datasets are highlighted in black boxes. (H) Examination of non-overlapping scATAC-seq cells in the joint

visualization with scRNA-seq cells. Genomic blacklist region read counts for the non-overlapping cluster are shown, in comparison to counts for all other cells in

the dataset combined. (I) Examination of a second non-overlapping scATAC-seq population, showing mean expression for each gene in the non-overlapping

population and all other CD14+ Monocytes.
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Figure S4. Validation of Predicted Gene Expression Patterns and Cell-Type Labels, Related to Figure 5

(A) Horizontally-compressed STARmap cells with predicted cell type transferred from the SMART-seq4 dataset (as for Figure 5F). (B) External validation of

predicted gene expression patterns. in situ hybridization images from the Allen Brain Atlas for Tesc and Pvrl3 alongside predictions for the same genes in

STARmap cells. (C) UMAP co-embedding of scRNA-seq and scATAC-seq cells following multi-modal integration, colored by predicted cell type in each dataset.

(D) As for (C), colored by dataset of origin. (E) UMAP on original STARmap data, with cells colored by the annotation given by the original authors [Wang et al.,

2018b]. (F) As for (E), with cells colored by their predicted identity. For the UMAP plots using the original STARmap data only, we are not able to recover the same

level of structure that is suggested by the heatmap in Figure 5G, demonstrating the value of transferring cell type classifications.



(legend on next page)



Figure S5. Considerations for the Integration of scRNA-Seq and STARmap Data, Related to Figure 5

(A) Distribution of correlations between SMART-seq2 and Drop-seq-based gene expression predictions for cell type marker genes. (B) Genes that exhibited low

agreement (correlation < 0.5) between the two predictions tended to be lowly expressed, and rarely detected (< 10% cells) in the Drop-seq dataset. Boxplot

shows the detection rate of genes with greater or less than 0.5 correlation. (C) Normalized expression values forCux2 in both the Drop-seq and the SMART-seq2

datasets showing different relative expression in the L2/3 IT and L4 clusters. (D) Representative scatterplots showing the correlation of Drop-seq and SMART-

seq2 imputed values. (E) Correlation of imputed gene expression measurements computed using a downsampled number of genes versus the full set of genes

under a random downsampling approach. (F) Scatterplot showing a strong positive relationship between how accurately a gene can be imputed versus its

redundancy in the scRNA-seq dataset. (G) Comparison of a random versus guided feature downsampling approach in terms of the correlation of imputed

expression measurement saturation.
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